Volume 2

AM Perspectives 2

Research in advanced manufacturing for architecture and construction

Authors

Ornella Iuorio (ed), Polytechnic University of Milan; Alexander Wolf (ed), Technical University of Darmstadt; Bruno Figueiredo (ed), University of Minho; Ulrich Knaack (ed), Technical University of Darmstadt; Paulo J.S. Cruz (ed), University of Minho
cover of AM Perspectives 2

Synopsis

The pressing challenges of climate change, reduction of available material and skilled labor for construction, have given a big input to the development of advanced manufacturing, declined in the triad of additive manufacturing, subtractive manufacturing and robotic platforms.

Additive Manufacturing (AM) has held its promise of mass customization, from the component scale to full building scale, providing the imagination that each component could be tailored to specific needs without significantly affecting its production costs or time. Today we are witnessing, that while, perhaps, complete dwellings have not been additively manufactured, certainly there have been few houses and neighbourhoods, having their walls fully 3D printed. We have seen them, to be developed in a variety of materials, from concrete, having the largest share, to earthen and bio-based now starting to appear. Bringing to the resurge of the traditional materials, as well opening up to a nearly infinite exploitation of innovative materials, which can be tailored to use organic compounds, to achieve thermal, acoustic and structural performance on demand.

The definition, prediction and assessment of the performance of those advanced manufactured materials, components, buildings and infrastructures is enabling to refine AM and the development of new architectural tectonics. Numerical and Virtual simulations are enabling prediction and testing of manufacturing stages, in use performances, and life cycle assessments to measure innovation versus current sustainable development goals.

Lately, we are also witnessing the manifestation of the (once) utopian dream of having machines, and robots around us building up components, and full structures. How far are we from the Plug-in City envisioned by the Archigram or by the Gramazio & Kohler urban forms resulting from robotic logics rather than human hands? Perhaps, we are still quite distant by their complete realization, but robotic agents are becoming real in the construction realm. From robotic systems assembling components, to platforms automating repetitive tasks, to digital twins sensing the cities, and drones constructing in harsh environments, we are witnessing growing human-robotic interactions.

Therefore, this book presents and discusses upon the latest research in the field of advanced manufacturing for the building realm, simulation for the advancement of customized properties of AM components, and robotic manufacturing of construction systems developed across a vivid network of researchers based in European Universities. We hope this book can stimulate reflection about the current and future trends in construction automation, with a strong emphasis on their architectural quality, forms of tectonics, and achievable performances. We hope some or many of these, research-based innovation will soon show their full application in construction industry!

Chapters

References

Abdallah, Y. K., & Estévez, A. T. (2023). Biowelding 3D-Printed Biodigital Brick of Seashell-Based Biocomposite by Pleurotus ostreatus Mycelium. Biomimetics, 8(6), 504. https://doi.org/10.3390/biomimetics8060504

Achtziger, J., Pfeifer, G., Ramcke, R., & Zilch, K. (2001). Mauerwerk Atlas. https://doi.org/10.11129/detail.9783955531652

ACTech – Additive Construction Technologies, University of Minho. (2025). ACTech Website. https://actech.uminho.pt/

Adriaenssens, S., Block, P., Veenendaal, D., & others. (n.d.). Shell Structures for Architecture: Form Finding and Optimization.

Aectual | 3D printed architecture & interiors. (n.d.).

Agha, D. A. (2024). 3D Paper Printing for the Built Environment. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-45076-2

Agustí-Juan, I., & Habert, G. (2017). Environmental design guidelines for digital fabrication. Journal of Cleaner Production, 142, 2780–2791.

Allaire, G., Dapogny, C., Estevez, R., Faure, A., & Michailidis, G. (2017). Structural optimization under overhang constraints imposed by additive manufacturing technologies. Journal of Computational Physics, 351, 295–328.

Ambrosino, M., Boucher, F., Mengeot, P., & Garone, E. (2024). Experimental validation of a constrained control architecture for a multi-robot bricklayer system. Mechatronics, 98, 103139.

Anderson, S. (Ed.). (2004). Eladio Dieste Innovation in Structural Art. Princeton Architectural Press.

Anton, A., Bedarf, P., Yoo, A., Dillenburger, B., Reiter, L. E. X., Wangler, T., & Flatt, R. J. (2020). Concrete choreography: Prefabrication of 3D-printed columns. Fabricate 2020: Making Resilient Architecture, 286–293.

Argento, G. R., Gabriele, S., & Varano, V. (2023). R-Funicularity of shells and effective eccentricity: Influence of tensile strength. Materials Research Proceedings, 26, 127–132. https://doi.org/10.21741/9781644902431-21

Armeni, I., Raghu, D., & Wolf, C. D. (2024). Artificial Intelligence for Predicting Reuse Patterns. In C. D. Wolf, S. Çetin, & N. M. P. Bocken (Eds.), A Circular Built Environment in the Digital Age (pp. 57–78). Springer International Publishing. https://doi.org/10.1007/978-3-031-39675-5_4

Arrè, L., Laghi, V., Palermo, M., Gasparini, G., & Trombetti, T. (2023). Wire-and-Arc Additive Manufacturing for lattice steel structures: Overview of the experimental characterization on dot-by-dot rods. Ce/Papers, 6(3–4), 757–762. https://doi.org/10.1002/CEPA.2622

Assunção, J., & others. (2024). Contribution of production processes in environmental impact of low carbon materials made by additive manufacturing. Automation in Construction, 165, 105545. https://doi.org/10.1016/j.autcon.2024.105545

Badino, E., Shtrepi, L., & Astolfi, A. (2020). Acoustic Performance-Based Design: A Brief Overview of the Opportunities and Limits in Current Practice. Acoustics, 2, 246–278.

Barbier, C., Bringault, A., Chatelin, S., Clairet, S., Couturier, C., Dufournet, C., Gassin, H., Hanau, T., Jacob, A., Jedliczka, M., Lebert, N., Letz, T., Marignac, Y., Matagne, T., Quirion, P., Rauzier, E., Rieser, T., Salomon, T., Sidler, O., … negaWatt, A. (2021). NegaWatt scenario 2022: Energy transition at the heart of a societal transition—Synthesis of the 2022 NegaWatt scenario.

BB fiberbeton—GRC manufacturer—Your vision—Our Solutions. (n.d.).

Bekker, A. C. M., & Verlinden, J. C. (2018). Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel. Journal of Cleaner Production, 177, 438–447.

Bergerman, M., & Xu, Y. (1997). Dexterity of underactuated manipulators. 1997 8th International Conference on Advanced Robotics (ICAR), 719–724. https://doi.org/10.1109/ICAR.1997.620261

Bhooshan, S., & V, T. (2020). Morph & Slerp: Shape description for 3D printing of concrete. Virtual Event. https://doi.org/10.1145/3424630.3425413

Birosz, M., Ledenyák, D., & Andó, M. (2022). Effect of FDM infill patterns on mechanical properties. Polymer Testing, 113, 107654.

Blaschke, K. K., Schwickert, S., & Kob, M. (2022). Untersuchung der raumakustischen Eigenschaften von Lehmoberflächen. DAGA 2022 Stuttgart.

Bock, T. (2015). The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Automation in Construction, 59, 113–121. https://doi.org/10.1016/j.autcon.2015.07.0

Bock, T., & Linner, T. (2026). Site Automation: Automated robotic on-site factories. Cambridge Press.

Boden, T., Andres, B., & Marland, G. (2016). Global CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751–2013. Oak Ridge National Laboratory.

Boelens, S. K. S., Smits, R. A. W. M. H. J., & Campen, D. H. V. (2018). Models for wind tunnel tests based on additive manufacturing technologies: A review. Aerospace Science and Technology.

Boje, C., Guerriero, A., Kubicki, S., & Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114, 103179.

Braumann, J. (2019). KUKA|prc.

Breseghello, L., & Naboni, R. (2022). Toolpath-based design for 3D concrete printing of carbon-efficient architectural structures. Additive Manufacturing, 56, 102872. https://doi.org/10.1016/j.addma.2022.102872

Briels, D., Kollmannsberger, S., Leithner, F., Matthäus, C., Nouman, A. S., Oztoprak, O., & Rank, E. (2022). Thermal Optimization of Additively Manufactured Lightweight Concrete Wall Elements with Internal Cellular Structure through Simulations and Measurements. Buildings, 12, 1023. https://doi.org/10.3390/buildings12071023

Bruggi, M., Laghi, V., & Trombetti, T. (2021). Simultaneous design of the topology and the build orientation of Wire-and-Arc Additively Manufactured structural elements. Computers and Structures, 242. https://doi.org/10.1016/j.compstruc.2020.106370

Bruggi, M., Laghi, V., & Trombetti, T. (2022). Optimal design of Wire-and-Arc Additively Manufactured I-beams for prescribed deflection. Computer Assisted Methods in Engineering and Science.

Brûlé, S., Enoch, S., & Guenneau, S. (2020). Emergence of seismic metamaterials: Current state and future perspectives. Physics Letters A, 384, 126034. https://doi.org/10.1016/j.physleta.2019.126034

Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 180, 332–348. https://doi.org/10.1016/j.engstruct.2018.11.045

Buchanan, C., Matilainen, V. P., Salminen, A., & Gardner, L. (2017). Structural performance of additive manufactured metallic material and cross-sections. Journal of Constructional Steel Research, 136, 35–48. https://doi.org/10.1016/j.jcsr.2017.05.002

Burry, J., & others. (n.d.). FABRICATE 2020 MAKING RESILIENT ARCHITECTURE.

Buswell, R. A., Silva, W. R. L. de, Jones, S. Z., & Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37–49. https://doi.org/10.1016/j.cemconres.2018.05.006

Cabibihan, J.-J., Gaballa, A., Fadli, F., Irshidat, M., Mahdi, E., Biloria, N., Mansour, Z., & Abdulrazak, H. (2023). A guided approach for utilizing concrete robotic 3D printing for the architecture, engineering, and construction industry. Construction Robotics, 7(3–4), 265–278. https://doi.org/10.1007/s41693-023-00103-9

Caetano, D. E., Alves, J. L., Neto, R. L., & Duarte, T. P. (2017). Development of Plaster Mixtures Formulations for Additive Manufacturing. 257–277.

Campos, T., Cruz, P. J. S., & Figueiredo, B. (2019). Exploração da utilização de pasta de papel na fabricação aditiva em arquitetura. Universidade do Minho.

Campos, T., Cruz, P. J. S., & Figueiredo, B. (2022a). Experimentation of natural materials: The use of chitin in additive manufacturing. In M. Hvejsel & P. J. S. Cruz (Eds.), Proceedings of the 5th International Conference on Structures and Architecture (pp. 87–88).

Campos, T., Cruz, P. J. S., & Figueiredo, B. (2022b). Exploration of natural materials in additive manufacturing in architecture: Use of cellulose-based pulps. In M. Hvejsel & P. J. S. Cruz (Eds.), Proceedings of the 5th International Conference on Structures and Architecture (pp. 87–88).

Campos, T., Cruz, P. J. S., & Figueiredo, B. (2024). Natural Material Innovation in Sustainable Building Systems. 1st International Conference on Design and Industry.

Campos, T., Cruz, P. J. S., & Figueiredo, B. A. F. (2021). The Use of Natural Materials in Additive Manufacturing of Buildings Components—Towards a more sustainable architecture. ECAADe 2021: Towards a New, Configurable Architecture, 355–364. https://doi.org/10.52842/conf.ecaade.2021.1.355

Carcassi, O. B., & Ben-Alon, L. (2024). Additive manufacturing of natural materials. Automation in Construction, 167, 105703. https://doi.org/10.1016/j.autcon.2024.105703

Carpo, M. (2020). Rise of the machines: Mario Carpo on robotic construction. In Artforum (Vol. 58). https://www.mariocarpo.com

Carpo, M. (2023). Mario Carpo in conversation with Mathis Köhler. In FABRICATE 2014: Negotiating Design & Making (pp. 12–21). Gta Verlag, ETH Zürich.

Carvalho, J. (2025). Integração de Processos Digitais no Desenho e Fabrico Aditivo de Sistemas Arquitetónicos Cerâmicos [PhD Thesis]. School of Architecture of the University of Minho.

Casas, G. (2019). roslibpy: Python ROS bridge library.

Center for Sustainable Systems, U. of M. (2024). Critical Materials Factsheet (CSS14-15).

Cesarano, J. (1998). Robocasting provides moldless fabrication from slurry deposition. Ceramic Industry, 148, 94–100.

Çetin, S., Wolf, C. D., & Bocken, N. (2021). Circular Digital Built Environment: An Emerging Framework. Sustainability, 13(11). https://doi.org/10.3390/su13116348

Chaltiel, S., Bravo, M., Veenendaal, D., & Sayers, G. (2020). Drone Spraying on Light Formwork for Mud Shells. Design Transactions, UCL Press, 150–157.

Chaturvedi, M., Scutelnicu, E., Rusu, C. C., Mistodie, L. R., Mihailescu, D., & Vendan, S. A. (2021). Wire Arc Additive Manufacturing: Review on Recent Findings and Challenges in Industrial Applications and Materials Characterization. Metals, 11(6), 939. https://doi.org/10.3390/MET11060939

Che, Y., & Lei, X. (n.d.). Automatically Sprayed Ultra-High Performance Glass Fiber Reinforced Concrete.

Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., Liu, C., Li, Y., Wang, P., & He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39, 661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

Chhadeh, P. A., Sleiman, K., Hoffmann, H., Funke, N., Rettschlag, K., Jäschke, P., Baitinger, M., Knaack, U., Kaierle, S., & Seel, M. (2025). Design of additively manufactured glass components for glass point fixings. Glass Structures & Engineering, 10(1), 6. https://doi.org/10.1007/s40940-024-00290-z

Chiang, Y. K., Oberst, S., Melnikov, A., & others. (2020). Reconfigurable Acoustic Metagrating for High-Efficiency Anomalous Reflection. Physical Review Applied, 13, 064067. https://doi.org/10.1103/PhysRevApplied.13.064067

Chierici, M., Berto, F., & Kanyilmaz, A. (2021). Resource-efficient joint fabrication by welding metal 3D-printed parts to conventional steel: A structural integrity study. Fatigue & Fracture of Engineering Materials & Structures, 44, 1271–1291. https://doi.org/10.1111/FFE.13428

Chiusoli, A. (2018). The first 3D printed House with earth | Gaia. https://www.3dwasp.com/en/3d-printed-house-gaia/

Chiusoli, A. (2021). Tecla. https://www.3dwasp.com/en/3d-printed-house-tecla/

Claypool, M., Garcia, M. J., Retsin, G., & Soler, V. (2019). Architecture in the age of automation.

Coleman, D., Şucan, I., Chitta, S., & Correll, N. (2014). Reducing the barrier to entry of complex robotic software: A MoveIt! Case study. Journal of Software Engineering for Robotics, 5(1), 3–16. https://doi.org/10.6092/joser_2014_05_01_p3

Conel, S. (2023). Coastal Erosion: Causes, Consequences, and Mitigation Strategies. Journal of Marine Science Research & Development, 13, 414. https://doi.org/10.4172/2155-9910.1000414

Construction, P. 3D. (n.d.). Europe’s largest 3D-printed apartment building. https://www.peri3dconstruction.com/en/wallenhaus-en

Correia, D. A. (2015). Polymers in building and construction. In M. Gonçalves & F. Margarido (Eds.), Materials for construction and civil engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-08236-3_10

Costanzi, C. B. (2023). Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades (Vol. 68). Springer Fachmedien Wiesbaden.

Crump, S. S. (1992). Apparatus and method for creating three-dimensional objects.

Cuevas, J., Strzałkowski, J., Kim, J.-S., Ehm, C., Glotz, T., Chougan, M., Ghaffar, S. H., Stephan, D., & Sikora, P. (2023). Towards development of sustainable lightweight 3D printed wall building envelopes – experimental and numerical studies. Case Studies in Construction Materials, 18, e01945.

Dambeck, H. (2014). 3D-Drucker fertigt zehn Häuser an einem Tag. In Spiegel Wissenschaft. https://www.spiegel.de/wissenschaft/technik/china-haus-mit-3-d-drucker-hergestellt-a-963249.html

Davila, J. M. D., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., & Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of Building Engineering, 26, 11.

Destatis. (2020). Bauen und Wohnen—Baufertigstellungen nach überwiegend verwendetem Baustoff 2019. https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Bauen/Publikationen/Downloads-Bautaetigkeit/baufertig-stellungen-baustoff-pdf-5311202.pdf

Deymier, P. A. (2013). Acoustic Metamaterials and Phononic Crystals. Springer Berlin Heidelberg.

Diankov, R., & Kuffner, J. J. (2008). OpenRAVE: A Planning Architecture for Autonomous Robotics. Carnegie Mellon University.

Dias, M. A. M., Dudte, L., Mahadevan, L., & Santangelo, C. (2012). Geometric mechanics of curved crease origami. Physical Review Letters, 109(06). https://doi.org/10.1103/PhysRevLett.109.114301

Dörrie, R., Laghi, V., Arrè, L., Kienbaum, G., Babovic, N., Hack, N., & Kloft, H. (2022). Combined Additive Manufacturing Techniques for Adaptive Coastline Protection Structures. Buildings, 12, 1806. https://doi.org/10.3390/BUILDINGS12111806

Duarte, G., & B, N. (2021). Learning from historical structures under compression for concrete 3D printing construction. Journal of Building Engineering, 43.

Dubor, A., Cabay, E., Marengo, M., Chadha, K., Moreno, S., Chang, Y.-C., Fiore, D., Sevostianov, F., Stirum, G. van L., Refalian, G., Li, Q., Riaz, S. R., & Ye, D. (2018). Digital adobe. https://iaac.net/project/digital-adobe/

Durm, J. (1905). Die Baukunst der Etrusker. Die Baukunst der Römer. Teil 2, Bd. 2 (2nd ed.). Kröner, Stuttgart.

Durmisevic, E. (2006). Transformable Building Structures: Design for Disassembly as a Way to Introduce Sustainable Engineering to Building Design & Construction. Cedris M&CC.

Elghaish, F., Hosseini, M. R., Kocaturk, T., Arashpour, M., & Ledari, M. B. (2023). Digitalised circular construction supply chain: An integrated BIM-Blockchain solution. Automation in Construction, 148, 104746. https://doi.org/10.1016/j.autcon.2023.104746

Elliott, K. S. (2017). Historical and chronological development of precast concrete structures. In K. S. Elliott & Z. A. Hamid (Eds.), Modernisation, mechanisation and industrialisation of concrete structures (1st ed., pp. 1–60). Wiley. https://doi.org/10.1002/9781118876503.ch1

EL-Mahdy, D., & Ali, M. (2024). Assessing the solar radiation performance of self-shaded 3D-printed clay-based façades. Architectural Engineering and Design Management, 20, 249–268. https://doi.org/10.1080/17452007.2023.2285325

Engineers, A. S. of C. (1999). Wind tunnel studies of buildings and structures.

European Commission. (2023). Transition pathway for Construction. https://ec.europa.eu/docsroom/documents/53854

European Union. (2024). Regulation (EU) 2024/3110 of the European Parliament and of the Council of 27 November 2024 laying down harmonised rules for the marketing of construction products and repealing Regulation (EU) No 305/2011. https://eur-lex.europa.eu/eli/reg/2024/3110/oj

Eversmann, P., Ehret, P., & Ihde, A. (2017). Curved-folding of thin aluminum plates: Towards structural multi-panel shells. Proceedings of the IASS Annual Symposium 2017.

Faludi, J., Baumers, M., Maskery, I., & Hague, R. (2017). Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate? Journal of Industrial Ecology, 21, S144–S156.

Farshad, M. (2013). Design and Analysis of Shell Structures (Vol. 16). Springer Science & Business Media.

Fayyad, I. (2023). Bending cylinders: A geometric syntax for zero-waste architecture. In K. D. et al (Ed.), Advances in Architectural Geometry (pp. 339–354). De Gruyter. https://doi.org/10.1515/9783111162683-026

Fazel, A., & Adel, A. (2024). Enhancing construction accuracy, productivity, and safety with augmented reality for timber fastening. Automation in Construction, 166, 105596. https://doi.org/10.1016/j.autcon.2024.105596

Fernández-Galiano, L., Frampton, K., & Mostafavi, M. (2003). El ingenio impaciente. In AV Monographs 101 (pp. 62–71). Arquitectura Viva.

Ferreira, J. G., & Branco, F. A. (2007). Structural application of GRC in telecommunication towers. Constr Build Mater, 21(1), 19–28. https://doi.org/10.1016/J.CONBUILDMAT.2005.08.003

Feshbach, D., Wu, X., Vasireddy, S., Beardell, L., To, B., Baryshnikov, Y., & Sung, C. (2023). CurveQuad: A centimeter-scale origami quadruped that leverages curved creases to self-fold and crawl with one motor. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2485–2492. https://doi.org/10.1109/IROS55552.2023.10342339

Feucht, T., Lange, J., Erven, M., Costanzi, C. B., Knaack, U., & Waldschmitt, B. (2020). Additive manufacturing by means of parametric robot programming. Construction Robotics, 4(1–2), 31–48. https://doi.org/10.1007/s41693-020-00033-w

Figueiredo, B., Cruz, P. J. S., & Carvalho, J. (2021). Challenges of 3d printed architectural ceramic components structures: Controlling the shrinkage and preventing the cracking. https://doi.org/10.6084/M9.FIGSHARE.14403194.V2

Fischer, M. (2009). Steineisendecken im Deutschen Reich 1892-1925.

Fleckenstein, J., Molter, P. L., Chokhachian, A., & Dörfler, K. (2022). Climate-Resilient Robotic Facades: Architectural Strategies to Improve Thermal Comfort in Outdoor Urban Environments using Robotic Assembly. Frontiers in Built Environment, 8. https://doi.org/10.3389/fbuil.2022.856871

Fluß, D. (2023). Design and evaluation of additive manufactured ceramics in construction [PhD Thesis]. TU Darmstadt.

Franklin, K., & Till, C. (2018). Radical Matter: Rethinking Materials for a Sustainable Future. Thames & Hudson.

Fratello, V. S., & Rael, R. (2020). Casa Covidia. https://www.ra-el-sanfratello.com/made/casa-covida/

Fröhlich, F., Hildebrand, J., & Bergmann, J. P. (2022). Additive Manufacturing with Borosilicate Glass and Soda-Lime Glass. 151–164.

Fry, N. R., Richardson, R. C., & Boyle, J. H. (2020). Robotic additive manufacturing system for dynamic build orientations. Rapid Prototyping Journal, 26(4), 659–667. https://doi.org/10.1108/RPJ-09-2019-0243

Fuchs, H. (2010). Schallabsorber und Schalldämpfer. Springer Berlin Heidelberg.

Fuchs, H. V. (2017). Raum-Akustik und Lärm-Minderung. Springer Berlin Heidelberg.

Fuchs, M. (2022). Conductive heat transfer in thermal bridges. Encyclopedia, 2(2), 1067–1081. https://doi.org/10.3390/encyclopedia2020067

Gabriele, S., Varano, V., Tomasello, G., & Alfonsi, D. (2018). R-Funicularity of form found shell structures. Engineering Structures, 157, 157–169. https://doi.org/10.1016/j.engstruct.2017.12.014

Galjaard, S., Hofman, S., & Ren, S. (2015). New Opportunities to Optimize Structural Designs in Metal by Using Additive Manufacturing. In P. Block, J. Knippers, N. J. Mitra, & W. Wang (Eds.), Advances in Architectural Geometry 2014 (pp. 79–93). Springer International Publishing.

Gallucio, G., Tamke, M., Nicholas, P., Svilans, T., Gaudillière-Jami, N., & Thomsen, M. R. (2024). Material Stories: Assessing Sustainability of Digital Fabrication with Bio-Based Materials through LCA. Proceedings of the Net Zero Conference 2024.

Gandia, A., Parascho, S., Rust, R., Casas, G., Gramazio, F., & Kohler, M. (2019). Towards automatic path planning for robotically assembled spatial structures. In Robotic Fabrication in Architecture, Art and Design (p. 73). Springer. https://doi.org/10.1007/978-3-319-92294-2_5

García-López, V. I. Á. (2023). Hydrodynamic behavior of a novel 3D-printed nature-inspired microreactor with a high length-to-surface ratio. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2023.118245

Gardner, L. (2023). Metal additive manufacturing in structural engineering – review, advances, opportunities and outlook. Structures, 47, 2178–2193. https://doi.org/10.1016/J.ISTRUC.2022.12.039

Gardner, L., Kyvelou, P., Herbert, G., & Buchanan, C. (2020). Testing and initial verification of the world’s first metal 3D printed bridge. Journal of Constructional Steel Research, 172. https://doi.org/10.1016/j.jcsr.2020.106233

Gartner Inc. (2025). What’s new in the 2023 Gartner Hype Cycle for Emerging Technologies. https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies

Gaudillière-Jami, N., & Dirrenberger, J. (2025). Non-Uniform Truss Modelling and Energy Consumption in Adaptive Space Lattice Manufacturing for Steel Structures. Proceedings of the 2025 ICSA Conference, University of Antwerp, Antwerp, 8-12 July.

Geerts, G. L. (2011). A design science research methodology and its application to accounting information systems research. International Journal of Accounting Information Systems, 12(2), 142–151. https://doi.org/10.1016/J.ACCINF.2011.02.004

Ghasemi, A. F., & Duarte, J. P. (2025). A systematic review of innovative advances in multi-material additive manufacturing: Implications for architecture and construction. Materials, 18(8), 1820. https://doi.org/10.3390/ma18081820

Ghassaei, A., Demaine, E. D., & Gershenfeld, N. (2018). Fast, interactive origami simulation using GPU computation. Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education, 4, 1151–1166.

Giglio, A., Paoletti, I., & Zheliazkova, M. (2020). Performance-based design approach for tailored acoustic surfaces. In Research for Development (pp. 137–148). Springer.

Gliozzi, A. S., Miniaci, M., Chiappone, A., & others. (2020). Tunable photo-responsive elastic metamaterials. Nature Communications, 11, 2576. https://doi.org/10.1038/s41467-020-16272-y

González, M. J., & Navarro, J. G. (2006). Assessment of the decrease of CO₂ emissions in the construction field through the selection of materials: Practical case study of three houses of low environmental impact. Building and Environment, 41, 902–909.

Grigolato, L., Martelletto, F., & Rosso, S. (2023). A bioinspired geometric modeling approach based on curve differential growth. International Conference of the International Society for Geometry and Graphics. https://doi.org/10.1007/978-3-031-58094-9_40

Groover, M. P. (2010). Fundamentals of Modern Manufacturing: Materials, Processes, and Systems (4th ed.). John Wiley & Sons.

Haag, V., Pfeffer, K., Hauser, A., & Krecov, D. (2005). Verfahren und Hilfsmittel zur Herstellung von Betonteilen, insbesondere von Betonhalbzeug und/oder von Betondecken sowie Hilfsmittel zur Herstellung von Betondecken (EP1568827A1).

Hack, N., & Kloft, H. (2020). Shotcrete 3D Printing Technology for the Fabrication of Slender Fully Reinforced Freeform Concrete Elements with High Surface Quality: A Real-Scale Demonstrator. 1128–1137.

Hack, N., Kloft, H., Mai, I., & others. (2024). Injection 3D Concrete Printing: From Structural Geometry to Fabrication. Architectural Design, 94, 30–39. https://doi.org/10.1002/ad.3094

Haleem, A., Javaid, M., Singh, R. P., Rab, S., Suman, R., Kumar, L., & Khan, I. H. (2022). Exploring the potential of 3D scanning in Industry 4.0: An overview. International Journal of Cognitive Computing in Engineering, 3, 161–171. https://doi.org/10.1016/j.ijcce.2022.08.003

Hanifa, M. F., & F.-M, B. (2024). Continuum optimization of 3D printed self-supported shell: Hybrid strategy for crafting ribbed system. Proceedings of the IASS 2024 Symposium, 14.

Hannouch, A. (2019). Acoustic Simulation and Conditioning in Vaulted Structures—Faceted Stereotomic Strategies for Multi-listener Spaces. In pp. 403–412.

Hansen, J. K., Nielsen, M. F., Hansen, S. G., Kunic, A., & Naboni, R. (2023). A Fracture Mechanical and Anisotropic FEM Model of The “Reconwood Joint” and Experimental Verification. Proceedings of the 13th WCTE 2023: Timber for a Livable Future, 1252–1260. https://doi.org/10.52202/069179-0171

Hansen, S. G., Kunic, A., & Naboni, R. (2021). A reversible connection for robotic assembly of timber structures. Engineering Structures, 245, 112795. https://doi.org/10.1016/j.engstruct.2021.112795

Hassan, Rodriguez-Ubinas, E., Tamimi, A. A., Trepci, E., Mansouri, A., & Almehairbi, K. (2024). 3D printing in construction. Automation in Construction, 163, 105417.

Havelar. (n.d.). Havelar. https://www.havelar.com/

Heinze, L., Liebringshausen, A., & Eversmann, P. (2024). 3D printing with wood waste. In Built Environment Additive Manufacturing (pp. 25–32).

Hietala, M., Rautio, T., Jaskari, M., Keskitalo, M., & Järvenpää, A. (2024). Fatigue Resistance Assessment of WAAM Carbon Steel. Key Eng Mater, 975, 147–153. https://doi.org/10.4028/P-C3FGTR

Hopkins, N., Vuuren, R. J. van, & Brooks, H. (2020). Additive manufacturing via tube extrusion (AMTEx). Additive Manufacturing, 36, 101606. https://doi.org/10.1016/j.addma.2020.101606

Hosseinzadeh, N., Ghiasian, M., Andiroglu, E., Lamere, J., Rhode-Barbarigos, L., Sobczak, J., Sealey, K. S., & Suraneni, P. (2022). Concrete Seawalls: A Review of Load Considerations, Ecological Performance, Durability, and Recent Innovations. Ecological Engineering, 178, 106573. https://doi.org/10.1016/j.ecoleng.2022.106573

Hou, Z., Fang, X., Li, Y., & Assouar, B. (2019). Highly Efficient Acoustic Metagrating with Strongly Coupled Surface Grooves. Physical Review Applied, 12, 034021. https://doi.org/10.1103/PhysRevApplied.12.034021

Houda, M., & Reinhardt, D. (2018). Structural Optimisation for 3D Printing Bespoke Geometries. In T. Fukuda, W. Huang, P. Janssen, K. Crolla, & S. Alhadidi (Eds.), Learning, Adapting and Prototyping—Proceedings of the 23rd CAADRIA Conference, Volume 1 (pp. 235–244).

HPWAAM. (n.d.).

Huang, C., Meng, X., Buchanan, C., & Gardner, L. (2022). Flexural Buckling of Wire Arc Additively Manufactured Tubular Columns. Journal of Structural Engineering, 148, 04022139. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003427

Huang, C., Meng, X., & Gardner, L. (2022). Cross-sectional behaviour of wire arc additively manufactured tubular beams. Engineering Structures, 272. https://doi.org/10.1016/J.ENGSTRUCT.2022.114922

Huang, Y. (2018). Automated motion planning for robotic assembly of discrete architectural structures [PhD Thesis]. Massachusetts Institute of Technology.

Hull, C. W. (1986). Apparatus for production of three dimensional objects by stereolithography (4,575,330).

IAAC. (2016). TerraPerforma, 3D Printed Performative Wall. https://iaac.net/project/terraperforma/

Iftekar, S. F., & others. (2023). Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers.

Iliffe, T. M., & Kornicker, L. S. (2009). Worldwide Diving Discoveries of Living Fossil Animals from the Depths of Anchialine and Marine Caves. In M. A. Lang, L. M. Krupsky, & W. M. Tisdale (Eds.), Proceedings of the Smithsonian Marine Science Symposium (pp. 269–280).

Innovate UK - GOV.UK. (n.d.).

Iuorio, O. (2025). From Mass Prefab to Mass Customization. Modern Methods of Constructions from Experimentation to Manufacturing. Springer.

Iuorio, O., Korkis, E., & Contestabile, M. (2019). Digital Tessellation and Fabrication of the ECHO shell. Proceedings of the IASS Annual Symposium 2019 Form and Forces.

Iuorio, O., Wilcock, S., & Korkis, E. (2024). Design for Deconstruction Through Digital Fabrication of Thin Spatial Systems. In V. Ungureanu, L. Bragança, C. Baniotopoulos, & K. M. Abdalla (Eds.), 4th International Conference ‘Coordinating Engineering for Sustainability and Resilience’ & Midterm Conference of CircularB (pp. 262–272). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-57800-7_24

Jeary, A. P. (2011). The use of wind tunnel measurements in building design. In IntechOpen.

Jiménez, P. (2013). Survey on assembly sequencing: A combinatorial and geometrical perspective. Journal of Intelligent Manufacturing, 24(2), 235–250. https://doi.org/10.1007/s10845-011-0578-5

Jipa, A., & Dillenburger, B. (2021). 3D printed formwork for concrete: State-of-the-art, opportunities, challenges, and applications. 3D Printing and Additive Manufacturing, 9. https://doi.org/10.1089/3dp.2021.0024

Johnson, D. (2002). Friedrich Edouard Hoffmann and the Invention of Continuous Kiln Technology: The archaeology of the Hoffmann kiln and 19th-century industrial development (Part 1). Industrial Archaeology Review, 24, 119–132. https://doi.org/10.1179/iar.2002.24.2.119

Kaamin, M., Zaid, N., Daud, M. E., & others. (2019). Analysis on Absorption Sound Acoustic Panels from Egg Tray with Corn Husk and Sugar Cane. International Journal of Innovative Technology and Exploring Engineering, 8, 1426–1431. https://doi.org/10.35940/ijitee.I3304.0789S319

Kagioglou, M., Cooper, R., Aouad, G., & Sexton, M. (2000). Rethinking construction: The Generic Design and Construction Process Protocol. Engineering Construction and Architectural Management, 7(2), 141–153. https://doi.org/10.1046/J.1365-232X.2000.00148.X

Kao, G. T.-C., Iannuzzo, A., Thomaszewski, B., Coros, S., Mele, T. V., & Block, P. (2022). Coupled Rigid-Block Analysis: Stability-Aware Design of Complex Discrete-Element Assemblies. Computer-Aided Design, 146, 103216. https://doi.org/10.1016/j.cad.2022.103216

Kazemi, M., Kabir, S. F., & Fini, E. H. (2021). State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resources, Conservation and Recycling, 174, 105776. https://doi.org/10.1016/j.resconrec.2021.105776

Kázmér, M., & Taboroši, D. (2013). Erosional and depositional textures and structures in coastal karst landscapes. In Coastal Karst Landforms. Springer. https://doi.org/10.1007/978-94-007-5016-6_2

Khoshnevis, B., Hwang, D., Yao, K.-T., & Zhenghao, Y. (2006). Mega-scale fabrication by contour crafting. International Journal of Industrial Systems Engineering, 1, 301–320.

Khoshnevis, D. B. (2025). Contour Crafting Corporation. http://www.contourcrafting.com

Kibert, C. J. (2016). Sustainable Construction: Green Building Design and Delivery. John Wiley & Sons.

Kilian, M., Flöry, S., Chen, Z., Mitra, N., Sheffer, A., & Pottmann, H. (2008). Curved folding. ACM Trans. Graph., 27(08). https://doi.org/10.1145/1399504.1360674

Klein, T. (2013). Integral Façade Construction—Towards a new product architecture for curtain walls. In A+BE (Ed.), Architecture and the Built Environment. https://aplusbe.eu

Kloft, H., Oechsler, J., Loccarini, F., & others. (2019). Robotische Fabrikation von Bauteilen aus Stampflehm. Deutsche BauZeitschrift, 54–59.

Kloft, H., Schmitz, L. P., Müller, C., Laghi, V., Babovic, N., & Baghdadi, A. (2023). Experimental Application of Robotic Wire-and-Arc Additive Manufacturing Technique for Strengthening the I-Beam Profiles. Buildings, 13, 366. https://doi.org/10.3390/BUILDINGS13020366

Kluska, E., & others. (2018). The Accuracy and the Printing Resolution Comparison of Different 3D Printing Technologies. Transactions on Aerospace Research, 2018, 69–86.

Knaack, U., Bilow, M., & Strauß, H. (2010). Rapids—Layered Fabrication Technologies for Facades and Building Construction (U. Knaack, T. Klein, & M. Bilow, Eds.; Vol. 04). 010 Publishers.

Knaack, U., & others. (2007). Facades. Principles of Construction. Birkhäuser Verlag AG.

Knaack, U., & others. (2016). Rapids 2.0 (U. Knaack, T. Klein, & M. Bilow, Eds.; Vol. 10). nai010 Publishers.

Knaack, U., Witte, D. D., Mohsen, A., Tessmann, O., Bilow, M., & Klein, T. (2016). Imagine 10-RAPIDS 2.0.

Kolarevic, B. (2005). Architecture in the Digital Age: Design and Manufacturing. Taylor & Francis.

Korkis, E., Dogar, M. R., & Iuorio, O. (2024). The role of parametric design in the robotic assembly of dry-constructed shell structures. In S. Gabriele, A. M. Bertetto, F. Marmo, & A. Micheletti (Eds.), Shell and Spatial Structures (pp. 98–107). Springer Nature Switzerland.

Korte, W. (2025). Gespräch: “Größtes 3D-Druck-Gebäude in Europa” (H. Strauß, Ed.).

Kroll, E., & Artzi, D. (2011). Enhancing aerospace engineering students’ learning with 3D printing wind-tunnel models. Rapid Prototyping Journal.

Krushynska, A. O., Torrent, D., Aragón, A. M., & others. (2023). Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: An overview. Nanophotonics, 12, 659–686.

Kunic, A., Angeletti, D., Marrone, G., & Naboni, R. (2024). Design and construction automation of reconfigurable timber slabs. Automation in Construction, 168, 105872. https://doi.org/10.1016/j.autcon.2024.105872

Kunic, A., Cognoli, R., & Naboni, R. (2023). RE:Thinking Timber Architecture. Enhancing Design and Construction Circularity Through Material Digital Twin. In M. R. Thomsen, C. Ratti, & M. Tamke (Eds.), Design for Rethinking Resources (pp. 409–422). Springer International Publishing. https://doi.org/10.1007/978-3-031-36554-6_26

Kunic, A., & Naboni, R. (2022). Collaborative design and construction of reconfigurable wood structures in a Mixed Reality environment. Proceedings of the 26th SIGraDi Conference 2022: Critical Appropriation, 651–662. https://doi.org/10.5151/sigradi2022-sigradi2022_193

Kunic, A., & Naboni, R. (2023). ReconWood Slab. Computational design and structural optimization of reconfigurable timber slabs. In Y. M. Xie, J. Burry, T. U. Lee, & J. Ma (Eds.), Proceedings of IASS Annual Symposia, Integration of Design and Fabrication (Issue 6, pp. 1–10).

Kunic, A., Talaei, A., & Naboni, R. (2025). Cyber-Physical Infrastructure for Material and Construction Data Tracking in Reconfigurable Timber Light-Frame Structures. In Construction Robotics. Springer Nature.

Kuzmenko, K., Ducoulombier, N., Feraille, A., & Roussel, N. (2022). Environmental impact of extrusion-based additive manufacturing: Generic model, power measurements and influence of printing resolution. Cement and Concrete Research, 157, 106807.

Kuzmenko, K., Gaudillière, N., Feraille, A., Dirrenberger, J., & Baverel, O. (2020). Assessing the environmental viability of 3D concrete printing technology. In Impact: Design With All Senses: Proceedings of the Design Modelling Symposium, Berlin 2019 (pp. 517–528). Springer International Publishing.

Kyvelou, P., Huang, C., Gardner, L., & Buchanan, C. (2021). Structural Testing and Design of Wire Arc Additively Manufactured Square Hollow Sections. Journal of Structural Engineering, 147, 04021218. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003188

Labonnote, N., Rønnquist, A., Manum, B., & Rüther, P. (2016). Additive construction: State-of-the art, challenges and opportunities. Automation in Construction, 72, 347–366. https://doi.org/10.1016/j.autcon.2016.08.026

Laccone, F., Malomo, L., Perez, J., Pietroni, N., Ponchio, F., Bickel, B., & Cignoni, P. (2019). Flexmaps pavilion: A twisted arc made of meso-structured flat flexible panels. Proceedings of the IASS Annual Symposium 2019.

Lagaros, N. D., & A, N. V. (2018). A C# code for solving 3D topology optimization problems using SAP2000. https://doi.org/10.1007/s11081-018-9384-7

Laghi, V., & Gasparini, G. (2023). Explorations of efficient design solutions for Wire-and-Arc Additive manufacturing in construction. Structures, 56, 104883. https://doi.org/10.1016/J.ISTRUC.2023.104883

Laghi, V., Palermo, M., Bruggi, M., Gasparini, G., & Trombetti, T. (2022). Blended structural optimization for wire-and-arc additively manufactured beams. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-022-00335-1

Laghi, V., Palermo, M., Gasparini, G., & Trombetti, T. (2020). Computational design and manufacturing of a half-scaled 3D-printed stainless steel diagrid column. Additive Manufacturing, 36, 101505. https://doi.org/10.1016/j.addma.2020.101505

Laghi, V., Palermo, M., Tonelli, L., Gasparini, G., Girelli, V. A., Ceschini, L., & Trombetti, T. (2022). Mechanical response of dot-by-dot wire-and-arc additively manufactured 304L stainless steel bars under tensile loading. Construction and Building Materials, 318, 125925. https://doi.org/10.1016/j.conbuildmat.2021.125925

Lamina emergent torsional (LET) joint. (2009). Mechanism and Machine Theory, 44(11), 2098–2109. https://doi.org/10.1016/j.mechmachtheory.2009.05.015

Lancaster, L. C. (2015). Vaulting tubes. In Innovative vaulting in the architecture of the Roman Empire: 1st to 4th centuries CE (pp. 99–128). Cambridge University Press. https://doi.org/10.1017/CBO9781107444935.006

Lang, R. J., & Howell, L. L. (2022). Laminar emergent flexural fold joints: Planar compliant mechanisms with large-angle near-revolute motion. Extreme Mechanics Letters, 52, 101657. https://doi.org/10.1016/j.eml.2022.101657

Lange, C., Ratoi, L., & Co, D. L. (2020). Reformative Coral Habitats – Rethinking Artificial Reef Structures through a Robotic 3D Clay Printing Method. In D. Holzer, W. Nakapan, A. Globa, & I. Koh (Eds.), RE: Anthropocene, Design in the Age of Humans – Proceedings of the 25th CAADRIA Conference – Volume 2 (pp. 463–472). https://doi.org/10.52842/conf.caadria.2020.2.463

Lange, J., Feucht, T., & Erven, M. (2020a). 3-D gedruckte Fußgängerbrücke aus Stahl: Entwicklung der Verfahrensketten für die Herstellung der Fassadenkopplungen mittels Auftragsschweißen. Journal of Facade Design and Engineering. https://doi.org/10.18419/opus-10762

Lange, J., Feucht, T., & Erven, M. (2020b). 3D printing with steel. Steel Construction, 13, 144–153. https://doi.org/10.1002/STCO.202000031

Lawanwadeekul, S., Otsuru, T., Tomiku, R., & Nishiguchi, H. (2019). Advanced investigation using the EApu method on the effect of quantitation and particle size of charcoal in clay bricks on sound absorption coefficient. International Congress on Acoustics, Aachen.

Lawanwadeekul, S., Otsuru, T., Tomiku, R., & Nishiguchi, H. (2021). Effects of Surface Conditions of Porous Clay Bricks on Sound Absorption Characteristics. Annual Congress of the International Institute of Acoustics and Vibration (IIAV).

Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., & Thorpe, T. (2012). Mix design and fresh properties for high-performance printing concrete. Materials and Structures, 45, 1221–1232.

Lee, M., & Tachi, T. (2023). Design and evaluation of compliant hinges for deployable thick origami structures. Proceedings of the IASS Annual Symposium 2023.

Lee, S. (1991). Backward assembly planning. Third International Conference on Tools for Artificial Intelligence (TAI ’91). https://doi.org/10.1109/tai.1991.167122

Lee, T.-U., Chen, Y., & Gattas, J. (2018). Curved-Crease Origami with Multiple States. Origami 7: 7th Int. Meeting of Origami Science, Mathematics, and Education, 849–864.

Legifrance. (2024). Décret n° 2024-1258 du 30 décembre 2024 modifiant les exigences de performance énergétique et environnementale des constructions de bâtiment en France métropolitaine. https://www.legifrance.gouv.fr/jorf/id/JORF-TEXT000050873122

Lehm, D. (2023). Lehmbau Techniken.

Leschok, M., Cheibas, I., Piccioni, V., Seshadri, B., Schlüter, A., Gramazio, F., Kohler, M., & Dillenburger, B. (2023). 3D printing facades: Design, fabrication, and assessment methods. Automation in Construction, 152, 104918.

Leschok, M., Kladeftira, M., Chan, Y.-F., & Dillenburger, B. (2024). Large-scale hollow-core 3D printing: Variable cross-section and printing features for lightweight plastic elements. 3D Printing and Additive Manufacturing, 11. https://doi.org/10.1089/3dp.2023.0287

Li, J., Slesarenko, V., & Rudykh, S. (2022). Emergence of instability-driven domains in soft stratified materials. NPJ Computational Materials, 8, 100. https://doi.org/10.1038/s41524-022-00783-x

Li, W., Zheng, A., & Y, L. (2017). Rib-reinforced Shell Structure. Computer Graphics Forum, 7.

Liu, H., & James, R. D. (2024). Design of origami structures with curved tiles between the creases. Journal of the Mechanics and Physics of Solids, 185, 105559. https://doi.org/10.1016/j.jmps.2024.105559

Liu, J., Gaynor, A. T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., Li, L., Kato, J., Tang, J., Wang, C. C. L., Cheng, L., Liang, X., & To, A. C. (2018). Current and future trends in topology optimization for additive manufacturing. Structural and Multidisciplinary Optimization, 57, 2457–2483. https://doi.org/10.1007/s00158-018-1994-3

Ma, G., & Wang, L. (2018). A critical review of preparation design and workability measurement of concrete material for large-scale 3D printing. Frontiers of Structural and Civil Engineering, 12(3), 382–400. https://doi.org/10.1007/s11709-017-0430-x

Maksoud, A., Mushtaha, E., Al-Sadoon, Z., Sahall, H., & Toutou, A. (2022). Design of Islamic Parametric Elevation for Interior, Enclosed Corridors to Optimize Daylighting and Solar Radiation Exposure in a Desert Climate: A Case Study of the University of Sharjah, UAE. Buildings, 12, 161. https://doi.org/10.3390/buildings12020161

Marais, H., Christen, H., Cho, S., Villiers, W. D., & Zijl, G. V. (2021). Computational assessment of thermal performance of 3D printed concrete wall structures with cavities. Journal of Building Engineering, 41, 102431.

Marfoq, K., & Kabalan, O. N. (2020). Terre Non Standard [Master’s Thesis]. ENSA Paris-Malaquais.

Martínez, J. A. I., Groß, M. F., Chen, Y., & others. (2021). Experimental observation of roton-like dispersion relations in metamaterials. Science Advances, 7. https://doi.org/10.1126/sciadv.abm2189

Mehdizadeh, S., & Tessmann, O. (2024). Animate concrete: Materialization of concrete element kinetic assemblies. In C. Yan, H. Chai, T. Sun, & P. F. Yuan (Eds.), Phygital Intelligence (pp. 395–407). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8405-3_33

Mehdizadeh, S., Wüst, P., Sysoyeva, N., Spiehl, D., Blaeser, A., & Tessmann, O. (2024). Multi-material hollow-strands by blow extrusion (BX) 3D printing. In N. Gaudillière-Jami & A. Wolf (Eds.), BE-AM 2024.

Mehdizadeh, S., Zimmermann, A., & Tessmann, O. (2022). Roto-Column: A continuous digital fabrication framework for casting large-scale linear concrete hollow elements. Towards Radical Regeneration: Design Modelling Symposium Berlin 2022, 476–486.

Melenbrinka, N., Werfel, J., & Menges, A. (2020). On-site autonomous construction robots: Towards unsupervised building. Automation in Construction, 119, 103312.

Meng, X., & Gardner, L. (2025). Hybrid construction featuring wire arc additive manufacturing: Review, concepts, challenges and opportunities. Elsevier Ltd. https://doi.org/10.1016/j.engstruct.2024.119337

Micelli, F., Renni, A., Kandalaft, A. G., & Moro, S. (2020). Fiber-reinforced concrete and ultrahigh-performance fiber-reinforced concrete materials. In New Materials in Civil Engineering (pp. 273–314). Elsevier. https://doi.org/10.1016/B978-0-12-818961-0.00007-7

Micheletti, A., Giannetti, I., G, M., & Tiero, A. (2022). Kinematic and static design of rigid origami structures: Application to modular yoshimura patterns. Journal of Architectural Engineering, 28(2), 04022009. https://doi.org/10.1061/(ASCE)AE.1943-5568.000053

Micheletti, A., Tiero, A., & Tomassetti, G. (2024). Simulation and design of isostatic thick origami structures. Meccanica, 59, 1403–1423. https://doi.org/10.1007/s11012-024-01815-0

Minke, G. (2017). Handbuch Lehmbau: Baustoffkunde, Techniken, Lehmarchitektur (9th ed.). ökobuch, Staufen bei Freiburg.

Mirzaali, M. J., Caracciolo, A., Pahlavani, H., & others. (2018). Multi-material 3D printed mechanical metamaterials: Rational design of elastic properties through spatial distribution of hard and soft phases. Applied Physics Letters, 113. https://doi.org/10.1063/1.5064864

Mischke, J., Stokvis, K., & Vermeltfoort, K. (2024). Delivering on construction productivity is no longer optional. https://www.mckinsey.com/capabilities/operations/our-insights/delivering-on-construction-productivity-is-no-longer-optional

Mitropoulou, I., Bernhard, M., & Dillenburger, B. (2020). Print paths key-framing: Design for non-planar layered robotic FDM printing. Proceedings of the 5th Annual ACM Symposium on Computational Fabrication (SCF ’20). https://doi.org/10.1145/3424630.3425408

Mitterberger, D., & Derme, T. (2019). Soil 3D Printing. 586–595.

Mohan, M. K., Rahul, A. V., Schutter, G. D., & Tittelboom, K. V. (2021). Extrusion-based concrete 3D printing from a material perspective: A state-of-the-art review. Cement and Concrete Composites, 115, 103855. https://doi.org/10.1016/j.cemconcomp.2020.103855

Möhring, R. (2009). Baustoffkunde für Ausbildung und Praxis (11th ed.). Neuwied.

Moini, R. (2023). Perspectives in architected infrastructure materials. RILEM Technical Letters, 8, 125–140. https://doi.org/10.21809/rilemtechlett.2023.183

Monkman, S., Hernandez, M. L., & Moreno, D. G. (2024). A Case Study in Industrialized 3D-printing: A One Hundred Home Community Near Austin, Texas. Digit. Concr. 2024 - Suppl. Proc. https://doi.org/10.24355/dbbs.084-202408190923-0

Mosso, L., & Mosso, L. (2011). Computers and Human Research: Programming and self-Management of Form. In M. Rosen (Ed.), A Little-Known Story about a Movement, a Magazine, and the Computer’s Arrival in Art: New Tendencies and Bit International 1961-1973 (pp. 427–431). ZKM/Center for Art and Media; MIT Press.

Mu, D., Shu, H., Zhao, L., & An, A. (2020). A Review of Research on Seismic Metamaterials. Advanced Engineering Materials, 22, 1901148. https://doi.org/10.1002/adem.201901148

MX3D. (n.d.). MX3D. https://www.mx3d.com

MX3D | Architecture & Construction. (n.d.).

Naboni, R., & Paoletti, I. (n.d.). SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY POLIMI SPRINGER BRIEFS Advanced Customization in Architectural Design and Construction.

Nan, C., & Zucco, M. (2023). Computational Clay Protostructures. Built Environment - Additive Manufacturing Symposium 2023, 176–177.

Nazzi, F. (2016). The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Scientific Reports, 6, 28341. https://doi.org/10.1038/srep28341

NBS. (2023). What is a u-value? Heat loss, thermal mass, and online calculators explained.

Nelson, T., Lang, R., Pehrson, N., Magleby, S., & Howell, L. (2016). Facilitating deployable mechanisms and structures via developable lamina emergent arrays. Journal of Mechanisms and Robotics, 8, 031006. https://doi.org/10.1115/1.4031901

Nemani, A. V., Ghaffari, M., & Nasiri, A. (2020). On the Post-Printing Heat Treatment of a Wire Arc Additively Manufactured ER70S Part. Materials, 13(12), 2795. https://doi.org/10.3390/MA13122795

Nguyen, D. T., & others. (2017). 3D-Printed Transparent Glass. Advanced Materials, 29(26), 1701181. https://doi.org/10.1002/adma.201701181

Nicholas, P., Zwierzycki, M., Nørgaard, E. C., Leinweber, S., Stasiuk, D., Thomsen, M. R., & Hutchinson, C. (2017). Adaptive robotic fabrication for conditions of material inconsistency: Increasing the geometric accuracy of incrementally formed panels. Fabricate 2017, 114–121.

Niesten, J., Tenpierik, M. J., & Krimm, J. (2022). Sound predictions in an urban context. Building Acoustics, 29, 27–52. https://doi.org/10.1177/1351010X211034665

Nocke, C. (n.d.). Eine Übersicht zur Hörsamkeit von Räumen.

Nocke, C. (2019). Raumakustik im Alltag. Fraunhofer IRB Verlag.

Nordic Sustainable Construction. (2024). Danish Political Agreement Tightens the Limit Values for New Buildings and Extends the Impact. https://www.nordicsustainableconstruction.com/news/2024/june/tillaegsaftale-paa-en-gelsk

Ohshima, T., Tachi, T., Tanaka, H., & Yamaguchi, Y. (2015). Analysis and design of elastic materials formed using 2d repetitive slit pattern. Proceedings of the IASS Annual Symposium 2015.

Ojeda, J., Knaack, U., & Rosendahl, P. (2024a). 3D Scanning Workflow Applied for Robotic 3D Printing on Complex Surfaces: Taking Advantage of a Digital Shadow for Robot Motion Path Generation and Geometric Control. In A. Estevez & D. Torreblanca-Diaz (Eds.), SIGraDi 2024: Proceedings of the 28th Conference of the Ibero-American Society of Digital Graphics (pp. 1117–1128).

Ojeda, J., Knaack, U., & Rosendahl, P. L. (2024b). Geometry Acquisition with Computer Vision Applied to WAAM. In P. L. Rosendahl, B. Figueiredo, M. Turin, U. Knaack, & P. J. S. Cruz (Eds.), AM Perspectives 1. Research in Additive Manufacturing for Architecture and Construction (Vol. 1, pp. 157–166).

Oladele, I. O., Okoro, C. J., Taiwo, A. S., Onuh, L. N., Agbeboh, N. I., Balogun, O. P., Olubambi, P. A., & Lephuthing, S. S. (2023). Modern trends in recycling waste thermoplastics and their prospective applications: A review. Journal of Composites Science, 7(5), 5. https://doi.org/10.3390/jcs7050198

Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. 2011 IEEE International Conference on Robotics and Automation. https://doi.org/10.1109/icra.2011.5979561

omlab. (2023). Nature-friendly starter home for house martin. https://www.omlab.nl/en/martin-starterhome/

Online, W. W. (n.d.). Porto Annual Weather Averages. https://www.worldweatheronline.com/porto-weather-averages/porto/pt.aspx

Organization, W. H. (2011). Burden of disease from environmental noise.

Ostapska, K., Rüther, P., Loli, A., & Gradeci, K. (2024). Design for Disassembly: A systematic scoping review and analysis of built structures Designed for Disassembly. Sustainable Production and Consumption, 48, 377–395. https://doi.org/10.1016/j.spc.2024.05.014

Oxman, R. (2009). Performative Design: A Performance-Based Model of Digital Architectural Design. Environment and Planning B: Planning and Design, 36, 1026–1037. https://doi.org/10.1068/b34149

Pain, S. (2023). The Developed Surface: A Critical Exploration of Architectural Design and Research Cultures through 3D Printed Ceramics. Det Kongelige Akademi.

Paoletti, I., & Ceccon, L. (2018). The evolution of 3D printing in AEC: From experimental to consolidated techniques. In 3D Printing. IntechOpen. https://doi.org/10.5772/intechopen.79668

Paolini, A., Kollmannsberger, S., & Rank, E. (2019). Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Additive Manufacturing, 30, 100894. https://doi.org/10.1016/j.addma.2019.100894

Parascho, S., Han, I. X., Walker, S., Beghini, A., Bruun, E. P. G., & Adriaenssens, S. (2020). Robotic vault: A cooperative robotic assembly method for brick vault construction. Construction Robotics. https://doi.org/10.1007/s41693-020-00041-w

Parascho, S., & others. (2018). Computational Design of Robotically Assembled Spatial Structures. A Sequence Based Method for the Generation and Evaluation of Structures Fabricated with Cooperating Robots. Advances in Architectural Geometry (AAG 2018).

Parfitt, M. K. (2007). Architectural Engineering Approach to Building Façade Design, Construction, and Evaluation. Journal of Architectural Engineering, 13(3), 127–128. https://doi.org/10.1061/(ASCE)1076-0431(2007)13:3(127)

Pask, G. (1969). The Architectural Relevance of Cybernetics. Architectural Design, 7/6, 494–496.

Pellis, D., Kilian, M., Wang, H., Jiang, C., Müller, C., & Pottmann, H. (2020). Architectural freeform surfaces designed for cost-effective paneling mold re-use. Advances in Architectural Geometry 2020, 1–14.

Pereira, T., Kennedy, J. V., & Potgieter, J. (2019). A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manufacturing, 30, 11–18. https://doi.org/10.1016/j.promfg.2019.02.003

Peri GmbH. (2020). PERI builds the first 3D-printed residential building in Germany. https://www.peri.com/en/media/press-releases/peri-builds-the-first-3d-printed-residential-building-in-germany.html

Pessoa, S., Jesus, M., Guimarães, A. S., Lucas, S. S., & Simões, N. (2023). Experimental characterisation of hygrothermal properties of a 3D printed cementitious mortar. Case Studies in Construction Materials, 19, e02355.

Peters, B. (2007). The Smithsonian Courtyard Enclosure: A Case-Study of Digital Design Processes. Expanding Bodies: Art – Cities – Environment, 74–83.

Peters, B. (2010). Acoustic Performance as a Design Driver: Sound Simulation and Parametric Modeling Using Smart-Geometry. International Journal of Architectural Computing, 8, 337–358. https://doi.org/10.1260/1478-0771.8.3.337

Peters, B. (2012). Building Bytes 3D printed bricks. https://www.dezeen.com/2012/10/31/building-bytes-3d-printed-bricks-brian-peters/

Pignatelli, F., & Percoco, G. (2022). An application- and market-oriented review on large format additive manufacturing, focusing on polymer pellet-based 3D printing. Progress in Additive Manufacturing, 7. https://doi.org/10.1007/s40964-022-00309-3

Porges, O., Stouraitis, T., Borst, C., & Roa, M. A. (2014). Reachability and capability analysis for manipulation tasks. In M. A. Armada, A. Sanfeliu, & M. Ferre (Eds.), ROBOT2013: First Iberian Robotics Conference (pp. 703–718). Springer International Publishing.

Pottmann, H., Eigensatz, M., Vaxman, A., & Wallner, J. (2015). Architectural geometry. Computers & Graphics, 47, 145–164. https://doi.org/10.1016/j.cag.2014.11.002

Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., & Wang, W. (2007). Geometry of multi-layer freeform structures for architecture. ACM Transactions on Graphics, 26(3), 65–es.

Precast concrete products: General rules for factory production control of glass-fibre reinforced cement. (1999).

Prusa Polymers. (2022). Technical datasheet Prusament PLA by Prusa Polymers. https://prusament.com/wp-content/uploads/2022/10/PLA_Prusament_TDS_2021_10_EN.pdf

Quigley, M., & others. (2009). ROS: an open-source robot operating system. Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics.

Raspall, F., Banon, C., & Tay, J. C. (2019). AIRTABLE. Stainless steel printing for functional space frames. Computer-Aided Architectural Design Research in Asia (CAADRIA) 2019, 1, 113–122.

Rauch, M., Pechet, G., Hascoet, J. Y., & Ruckert, G. (2021). Extending High Value Components Performances with Additive Manufacturing: Application to Naval Applications. Solid State Phenomena, 319, 58–62. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/SSP.319.58

Ribeiro, J., Figueiredo, B., Cruz, P. J. S., & Camões, A. (2024). Concrete AM: Status of the Development of a Robotic Arm-Based Extrusion Setup. In P. Rosendahl, B. Figueiredo, M. Turrin, U. Knaack, & P. J. S. Cruz (Eds.), AM Perspectives: Research in Additive Manufacturing for Architecture and Construction (pp. 167–182). Lab2PT, University of Minho; ISM+D, TU Darmstadt; SOAP – Stichting OpenAccess Platforms.

Ridings, A., & others. (2023). A Literature Review of WAAM and Future Application in Buildings. 54–61. https://doi.org/10.35483/ACSA.AM.111.8

Rippmann, M., & others. (2016). The Armadillo Vault computational design and digital fabrication of a freeform stone shell. In S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges, & M. Pauly (Eds.), Advances in Architectural Geometry 2016 (pp. 344–363).

Robeller, C., & Weinand, Y. (2015). Interlocking Folded Plate – Integral Mechanical Attachment for Structural Wood Panels. International Journal of Space Structures, 30(2), 111–122. https://doi.org/10.1260/0266-3511.30.2.111

Rosendahl, P. L., & Wolf, A. (2022). The business case for 3D printing in the built environment. In Structures and Architecture: A Viable Urban Perspective? (pp. 254–259). https://doi.org/10.1201/9781003023555-31

Rossi, G. (2024). Machine-learning applications for predictive modelling of bio-polymer behaviour in architecture [PhD Thesis]. Royal Danish Academy.

Rossi, G., Walker, J., Søndergaard, A., & others. (2021a). Design-to-Manufacture Workflows of Sound-Scattering Acoustic Brick Walls.

Rossi, G., Walker, J., Søndergaard, A., & others. (2021b). Oscillating wire cutting and robotic assembly of bespoke acoustic tile systems. Construction Robotics, 5, 63–72. https://doi.org/10.1007/s41693-020-00051-8

Rust, R., & others. (2018). COMPAS_FAB: Robotic fabrication package for the COMPAS Framework.

Saint-Gobain, rigips. (n.d.). Akustikdecken von RIGIPS sorgen für optimale Raumakustik: Informationen, Bauteile und Systeme. https://www.rigips.de/loesungen-inspiration/raumakustik

Sarakinioti, M. V., Turrin, M., Konstantinou, T., Tenpierik, M., & Knaack, U. (2018). Developing an integrated 3D-printed façade with complex geometries for active temperature control. Materials Today Communications, 15, 275–279.

Sauerwein, M., Doubrovski, E., Balkenende, R., & Bakker, C. (2019). Exploring the potential of additive manufacturing for product design in a circular economy. Journal of Cleaner Production, 226, 1138–1149.

Scheder-Bieschin, L., Mele, T. V., & Block, P. (2023). Curved-crease flat-foldable bending-active plate structures. In K. D. et al (Ed.), Advances in Architectural Geometry (pp. 355–368). De Gruyter. https://doi.org/10.1515/9783111162683-027

Schoof, J. (2021). Mutter Erde im 3D-Druck: Versuchsbau Tecla von Mario Cucinella Architects und WASP.

Schutter, G. D., Lesage, K., Mechtcherine, V., Nerella, V. N., Habert, G., & Agusti-Juan, I. (2018). Vision of 3D printing with concrete—Technical, economic and environmental potentials. Cement and Concrete Research, 112, 25–36.

Schwartz, T. (2021). HAL robotics framework. International Association for Automation and Robotics in Construction (IAARC), 733–740. https://doi.org/10.22260/ISARC2021/0099

ScienceDirect. (2023). Thermal conductivity.

Scrinzi, G. (2023). Experimental testing methods for the performance control of standing seam roofing systems for large-roof applications and photovoltaic systems integration [PhD Thesis]. Politecnico di Milano.

Scrivener, K. L., Vanderley, M. J., & Ellis, M. G. (2018). Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO₂ Cement-Based Materials Industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

Seel, M., Chhadeh, P. A., Thiele, K., Akerboom, R., & Knaack, U. (2022). Additive Manufacturing of Glass for the Built Environment: Potential and Challenges. BE-AM | Built Environment Additive Manufacturing.

Sefene, E. M., Hailu, Y. M., & Tsegaw, A. A. (2022). Metal hybrid additive manufacturing: State-of-the-art. https://doi.org/10.1007/s40964-022-00262-1

Sekar, V., Fouladi, M. H., Namasivayam, S. N., & Sivanesan, S. (2019). Additive Manufacturing: A Novel Method for Developing an Acoustic Panel Made of Natural Fiber-Reinforced Composites with Enhanced Mechanical and Acoustical Properties. Journal of Engineering, 2019, 1–19. https://doi.org/10.1155/2019/4546863

Selvakumar, M., James, D. J. D., & Thangadurai, K. R. (2021). A Deep Study on Aluminum Composite Panel: Applications, Merits, and Demerits. International Journal of Mechanical Engineering, 6, 358–365.

Sennett, R. (2008). The Craftsman. Yale University Press.

Setaki, F., Tenpierik, M. J., Turrin, M., & Timmeren, A. van. (2014). Acoustic absorbers by additive manufacturing. Building and Environment, 72, 188–200. https://doi.org/10.1016/j.buildenv.2013.10.010

Setaki, F., Tian, F., Turrin, M., Tenpierik, M., Nijs, L., & Timmeren, A. (2023). 3D-printed sound absorbers: Compact and customisable at broadband frequencies. Architecture, Structures and Construction, 3, 1–11. https://doi.org/10.1007/s44150-023-00086-9

Shah, A., Aliyev, R., Zeidler, H., & Krinke, S. (2023). A Review of the Recent Developments and Challenges in Wire Arc Additive Manufacturing (WAAM) Process. Journal of Manufacturing and Materials Processing, 7(3), 97. https://doi.org/10.3390/JMMP7030097

Shahidin, H. I., Rahman, M. R. A., Idris, A. C., & Saad, M. R. (2021). 3D printed models vs conventional models: Comparison of aerodynamic performance for wind tunnel experiments. Jurnal Kejuruteraan.

Shojaei, A., & Naderi, H. (2024). Blockchain Technology for a Circular Built Environment. In C. D. Wolf, S. Çetin, & N. M. P. Bocken (Eds.), A Circular Built Environment in the Digital Age (pp. 213–228). Springer International Publishing. https://doi.org/10.1007/978-3-031-39675-5_12

Silva, W. R. L. da. (2017). 3D concrete printing: From material design to extrusion.

Silva, J. M., & others. (2024). Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms. Inventions, 9(4), 80. https://doi.org/10.3390/inventions9040080

Simon, R., Dreissen, A., Leroy, H., & others. (2023). Acoustic camouflage increases with body size and changes with bat echolocation frequency range in a community of nocturnally active Lepidoptera. Journal of Animal Ecology, 92, 2363–2372. https://doi.org/10.1111/1365-2656.14016

Sisko, M., & Pfaffli, I. (1995). Fiber Atlas: Identification of Papermaking Fibers. Springer.

Snooks, R. (2022). Behavioral tectonics: AgentBody prototypes and the compression of tectonics. Architectural Intelligence, 1(1), 1–14. https://doi.org/10.1007/S44223-022-00007-8

Soman, R. K., Nikolić, D., & Sanchez, B. (2024). Extended Reality as a Catalyst for Circular Economy Transition in the Built Environment. In C. D. Wolf, S. Çetin, & N. M. P. Bocken (Eds.), A Circular Built Environment in the Digital Age (pp. 171–193). Springer International Publishing. https://doi.org/10.1007/978-3-031-39675-5_10

Soto, B. G. D., Agustí-Juan, I., Hunhevicz, J., Joss, S., Graser, K., Habert, G., & Adey, B. T. (2018). Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Automation in Construction, 92, 297–311.

Spagnuolo, M., Reccia, E., Ciallella, A., & Cazzani, A. (2022). Matrix-embedded metamaterials: Applications for the architectural heritage. Mathematics and Mechanics of Solids, 27, 2275–2286. https://doi.org/10.1177/10812865221108372

Specification for the manufacture, curing and testing of GRC products. (2000). International Glassfibre Reinforced Cement Association.

Stern, M., Townsend, E., Massimino, D., & Becker, K. (2024). Advancing Sustainable 3D Printing: The Feasibility of Recycled Glass as a Building Material With Additive Manufacturing. https://doi.org/10.47982/cgc.9.583

Strauß, H. (2008). Funktionales Konstruieren—Einfluss additiver Verfahren auf Baukonstruktion und Architektur [PhD Thesis]. Hochschule OWL.

Strauß, H. (2010). AM Facades—Influence of additive processes on the development of facade constructions [PhD Thesis]. Hochschule OWL - University of Applied Sciences.

Strauß, H. (2013). AM Envelope—The potential of Additive Manufacturing for facade construction. In A+BE (Ed.), Architecture and the Built Environment. https://abe.tudelft.nl

StudioRap. (2019). New Delft Blue. https://studiorap.nl/New-Delft-Blue

StudioRap. (2023). Ceramic House. https://studiorap.nl/Ceramic-House

Supplies, J. A. (n.d.). Absorption coefficients of common building materials and finishes. https://www.acoustic-supplies.com/absorption-coefficient-chart/

Tachi, T. (2013). Composite rigid-foldable curved origami structure. Proceedings of the 1st Conference Transformables.

Tachi, T., & Epps, G. (2011). Designing one-dof mechanisms for architecture by rationalizing curved folding. Proceedings of the Int. Symposium on Algorithmic Design for Architecture and Urban Design, ALGODE TOKYO.

Tay, Y. W. D., Panda, B., Paul, S. C., & others. (2017). 3D printing trends in building and construction industry: A review. Virtual Physical Prototyping, 12, 261–276. https://doi.org/10.1080/17452759.2017.1326724

Tessmann, O., Knaack, U., Costanzi, C. B., Rosendahl, P., & Wibranek, B. (2022). Print Architecture! AADR (Spurbuchverlag).

The Navigator Company. (2025). O processo de fabrico do papel. https://www.thenavigatorcompany.com/produtos/papel/o-processo-produtivo-do-papel/

Tian, Z., Meng, Y., Zhao, S., & others. (2025). Moth-wing-inspired metasurface for modulating sound amplitude and phase. Mechanical Systems and Signal Processing, 223, 111849. https://doi.org/10.1016/j.ymssp.2024.111849

Tiles, & AISBL, B. E. (2022). Bricks and tiles—Industry, European Manufacturing. http://www.tiles-bricks.eu/industry

Treggiden, K. (2020). Wasted: When Trash Becomes Treasure. Ludion Publish.

Trost, J., Dunn, J., & Suiseeya, K. M. (2025). A new, literature-informed critical mineral life cycle assessment framework: An essential foundation for the energy transition. ChemRxiv. https://doi.org/10.26434/chemrxiv-2025-vvfzs

Trovato, M., Belluomo, L., Bici, M., Campana, F., & Cicconi, P. (2024). Machine Learning Trends in Design for Additive Manufacturing. In M. Carfagni, R. Furferi, P. D. Stefano, L. Governi, & F. Gherardini (Eds.), Design Tools and Methods in Industrial Engineering III (pp. 109–117). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-52075-4_14

Trubina, N., & others. (2024). Digital Technologies and Material Passports for Circularity in Buildings: An In-Depth Analysis of Current Practices and Emerging Trends. In V. Ungureanu, L. Bragança, C. Baniotopoulos, & K. M. Abdalla (Eds.), 4th International Conference “Coordinating Engineering for Sustainability and Resilience” & Midterm Conference of CircularB (pp. 690–699). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-57800-7_64

Tuli, P., & Shankar, R. (2015). Collaborative and lean new product development approach: A case study in the automotive product design. Int J Prod Res, 53(8), 2457–2471. https://doi.org/10.1080/00207543.2014.974849

United Nations. (2022). Kunming-Montreal Global biodiversity framework—Draft decision submitted by the President (U. e programme, Ed.). UN Environment Programme.

University of Stuttgart, livMatS Biomimetic Shell. (n.d.). LivMatS Biomimetic Shell. https://www.icd.uni-stuttgart.de/projects/livmats-biomimetic-shell/

Vatandoost, M., Ekhlassi, A., Golabchi, M., Rahbar, M., & Buelow, P. von. (2024). Fabrication methods of shell structures. Automation in Construction, 165, 105570.

Velden, G. van der. (2019a). MX3D : A 3D Metal Printing Company. Built Environment - Additive Manufacturing Symposium 2019, 73–78.

Velden, G. van der. (2019b). MX3D: A 3D Metal Printing Company. Built Environ. - Addit. Manuf. Symp. 2019, 73–78. https://be-am.de/

Vomhof, M., Vasey, L., Brauer, S., & others. (2014). Robotic Fabrication of Acoustic Brick Walls. 555–564.

Wagner, H. J., Alvarez, M., Groenewolt, A., & Menges, A. (2020). Towards digital automation flexibility in large-scale timber construction: Integrative robotic prefabrication and co-design of the BUGA Wood Pavilion. Construction Robotics, 4(3), 187–204. https://doi.org/10.1007/s41693-020-00038-5

Wang, X., Yu, H., McGee, W., Menassa, C. C., & Kamat, V. R. (2024). Enabling Building Information Model-driven human-robot collaborative construction workflows with closed-loop digital twins. Computers in Industry, 161, 104112. https://doi.org/10.1016/j.compind.2024.104112

Waqar, A., Alrasheed, K. A., & Benjeddou, O. (2024). Enhancing construction management outcomes through the mitigation of robotics implementation barriers: A sustainable practice model. Environmental Challenges, 16, 100989. https://doi.org/10.1016/j.envc.2024.100989

Warmuth, J., Brütting, J., & Fivet, C. (2021). Computational tool for stock-constrained design of structures. In S. A. Behnejad, G. A. R. Parke, & O. A. Samavati (Eds.), Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures.

Weger, D., & others. (2021). I.tech 3D Sonderdruck aus Beton. In Beton. Holger Kotzan: concrete content UG (hb).

Welcome to GRCA | International Glassfibre Reinforced Concrete Association. (n.d.).

Wiener, N. (1965). Cybernetics or Control and Communication in the Animal and the Machine. The MIT Press.

Wilcock, S., Boyle, J. H., Dogar, M., & Iuorio, O. (2022). Automated robotics agents for assembly-aware design of shells. 5th International Conference on Structures and Architecture, 1061–1068. https://doi.org/10.1201/9781003023555

Wilcock, S., Fang, H., Dogar, M. R., & Iuorio, O. (2024). Integrating R-funicularity, local stability and inter-panel constraint assessment for discrete timber shell construction design. Structures, 64, 106592. https://doi.org/10.1016/j.istruc.2024.106592

Wilfinger, M., Knaack, U., Strauß, H., & Fehlhaber, T. (2021). Ziegel aus dem 3D-Drucker. B Konstruktion · Bauausführung · Bauwerkserhaltung V.

Witte, D. de. (2022a). Clay Printing. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-37161-6

Witte, D. de. (2022b). Towards the fourth generation brickwork.

Wohlers, T., Campbell, R. I., Diegel, O., Kowen, J., Mostow, N., & Fidan, I. (2022). Wohlers Report 2022: 3D Printing and Additive Manufacturing – Global State of the Industry (D. L. Bourell & J. V. Rensburg, Eds.). Wohlers Associates.

Woldseth, R. V., & S, O. (2024). An 808 line phasor-based dehomogenisation Matlab code for. Structural and Multi-Disciplinary Optimization. https://doi.org/10.1007/s00158-024-03880-1

Wolf, A. (2024a). Contemporary Ceramic Column. In U. Knaack, O. Tessmann, N. Gaudillière-Jami, & A. Wolf (Eds.), BE-AM Symposium 2024.

Wolf, A. (2024b). The Flush Integration of Additively Manufactured Ceramic Components in Buildings. In P. L. Rosendahl, B. Figueiredo, M. Turrin, & U. Knaack (Eds.), AM Perspectives: Research in Additive Manufacturing for Architecture and Construction (pp. 183–190). https://doi.org/10.47982/a82n7r50

Wolf, A. (2025). Applied Additively Manufactured Ceramics for the Built Environment [PhD Thesis]. Technische Universität Darmstadt.

Wolf, A., Bauer, S., & Knaack, U. (2024). Green Klinkers. In Digital Concrete 2024—Supplementary Proceedings. https://doi.org/10.24355/dbbs.084-202408191008-0

Wolf, A., Carvalho, J., Figueiredo, B., Cruz, P. J. S., & Tatiana, C. (2023). Support-strategies for Robocasting Ceramic Building Components. ECAADe2023 DIGITAL DESIGN RECONSIDERED, 377–386. https://doi.org/10.52842/conf.ecaade.2023.1.377

Wolf, A., Rosendahl, P. L., & Knaack, U. (2022). Additive manufacturing of clay and ceramic building components. Automation in Construction, 133, 103956. https://doi.org/10.1016/j.autcon.2021.103956

Wolf, B. (n.d.). PhoneStar Tri. https://www.wolf-bavaria.com/phonestar-tri/1008/

Wolf, C. D., Çetin, S., & Bocken, N. M. P. (Eds.). (2024). A Circular Built Environment in the Digital Age. Springer International Publishing. https://doi.org/10.1007/978-3-031-39675-5

Wolfs, R. J. M., & Suiker, A. S. J. (2019). Structural failure during extrusion-based 3D printing processes. International Journal of Advanced Manufacturing Technology, 104(1–4), 565–584. https://doi.org/10.1007/s00170-019-03844-6

Wong, C. O., Zhang, J., Voyles, R. M., & Min, B.-C. (2022). BIM-based simulation of construction robotics in the assembly process of wood frames. Automation in Construction, 137, 104194.

Woodruff, S. R., & Filipov, E. T. (2020). A bar and hinge model formulation for structural analysis of curved-crease origami. International Journal of Solids and Structures, 204–205, 114–127. https://doi.org/10.1016/j.ijsolstr.2020.08.010

Xia, C., & others. (2020). A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system. J Manuf Syst, 57, 31–45. https://doi.org/10.1016/J.JMSY.2020.08.008

Xiao, Z., Gao, P., Wang, D., & others. (2021). Ventilated metamaterials for broadband sound insulation and tunable transmission at low frequency. Extreme Mechanics Letters, 46, 101348. https://doi.org/10.1016/j.eml.2021.101348

Yablonina, M., & Menges, A. (2019). Distributed fabrication: Cooperative making with larger groups of smaller machines. Architectural Design, 89(2), 62–69. https://doi.org/10.1002/ad.2413

Yang, X., Amtsberg, F., Sedlmair, M., & Menges, A. (2024). Challenges and potential for human–robot collaboration in timber prefabrication. Automation in Construction, 160, 105333. https://doi.org/10.1016/j.autcon.2024.105333

Yuan, L., & others. (2021). Fabrication of metallic parts with overhanging structures using the robotic wire arc additive manufacturing. J Manuf Process, 63, 24–34. https://doi.org/10.1016/J.JMAPRO.2020.03.018

Yuan, P. F. (2020). Introduction – Form Following Robotic Force. In P. F. Yuan & P. Block (Eds.), Robotic Force Printing: A Joint Workshop of MIT/ETH/TJ (pp. 10–15). Tongji University Press.

Zahabizadeh, B., Cunha, V. M. C. F., Pereira, J., & Gonçalves, C. (2019). Development of cement-based mortars for 3D printing through wet extrusion. IABSE Symposium 2019 Guimarães – Towards a Resilient Built Environment - Risk and Asset Management, 540–547.

Zhai, Z., Wang, Y., Lin, K., Wu, L., & Jiang, H. (2020). In situ stiffness manipulation using elegant curved origami. Science Advances, 6(47), eabe2000. https://doi.org/10.1126/sciadv.abe2000

Zhang, C., Gao, M., & Zeng, X. (2019). Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy. J Mater Process Technol, 271, 85–92. https://doi.org/10.1016/J.JMATPROTEC.2019.03.028

Zhang, T., Bok, E., Tomoda, M., & others. (2022). Compact acoustic metamaterial based on the 3D Mie resonance of a maze ball with an octahedral structure. Applied Physics Letters, 120. https://doi.org/10.1063/5.0084030

Zhao, S., & Angelis, E. de. (2019). Performance-based Generative Architecture Design: A Review on Design Problem Formulation and Software Utilization. Journal of Integrated Design and Process Science, 22, 55–76. https://doi.org/10.3233/JID190001

Zheliazkova, M., Milano, P. D., Giglio, A., & Paoletti, I. (2020). Acoustic characterisation of a novel wood/cork composite material for architectural applications. –.

Zimmermann, L., Seiler, P. M., & Mai, C. (2017). Glassfibre Reinforced Concrete: A Review. IOP Conf Ser Mater Sci Eng, 246(1), 012002. https://doi.org/10.1088/1757-899X/246/1/012002

Zingoni, A. (2017). Shell Structures in Civil and Mechanical Engineering: Theory and Analysis.

Zuluaga, D. C. (2024). Designing Material Architectures. In AM PERSPECTIVES: Research in additive manufacturing for architecture and construction (pp. 53–60). SOAP.

Keywords:

Additive Manufacturing, Architecture, Construction

Published

20 June 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

9789493439047

Date of first publication (11)

01-08-2025

Details about the available publication format: Paperback

Paperback

ISBN-13 (15)

9789493439047

Physical Dimensions

ویزای استارتاپ luxury gifts