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This study reviews the state of the art in room acoustics, focusing on 
current practices and the potential of digital technologies to enhance 
the implementation of acoustic measures in building projects. It briefly 
summarizes acoustic basics and existing regulations and examines 
commonly used materials, digital manufacturing and design pro-
cesses for acoustically effective geometries. In particular, the study 
explores the opportunities provided by performance-based design 
and additive manufacturing to expand the applications of acoustics in 
construction. Despite widespread knowledge of the negative effects 
of poor acoustics on well-being, productivity, and health, room acous-
tics remain underprioritized compared to building acoustics in teach-
ing and standardization and consequently the realization of projects. 
Current solutions, while effective, are limited in design flexibility. The 
review identifies three key parameters for efficient acoustic design: 
performance-based design (I), materials (II), and digital fabrication 
(III). Additive manufacturing, in particular, is promising for enhancing 
both design freedom and customization, enabling tailored acoustic 
panels that meet specific project requirements. Clay and paper are 
identified as highly suitable materials for these applications, combin-
ing sustainability with acoustic effectiveness. This research highlights 
the significant potential of integrating digital fabrication and advanced 
manufacturing techniques in room acoustics to promote healthier and 
more adaptable built environments.

INTRODUCTION

Performance-based design (PBD) integrates analytical and 
generative methods to optimize acoustics through iterative 
feedback loops [1]. Unlike traditional design approaches, 
PBD prioritizes functionality, based on predefined acoustic 
parameters. Efficiency improves with numerical simulations 
and AI-driven methods.

Conventional materials may limit customization in 
geometry, performance, and aesthetics. Digital fabrication, 
however, promises a precise structural and volumetric de-
sign, creating engineered materials with enhanced acoustic 
properties [2]. Advances in additive and subtractive man-
ufacturing have expanded research in acoustic materials, 

moving beyond monolithic materials toward optimized, ap-
plication-specific solutions.

This paper explores how digital technologies may 
improve room acoustics by tailoring material geometries 
based on space usage. It reviews recent developments in 
engineered acoustic materials, focusing on three key areas: 
acoustics, additive manufacturing, and materials in building 
acoustics. The study considers works published between 
2010 and 2024, coinciding with the rise of digital fabrication 
following the expiration of the Fused Deposition Modeling 
patent in 2009 [3].

Relevant articles were identified through searches 
for the keywords acoustics, additive manufacturing, noise 
reduction, sound absorption, and 3D-printed materials in 
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construction. The primary focus is interior spaces, but also 
studies on outdoor soundscapes are included. Only English- 
and German-language papers with full online access were 
considered.

ARCHITECTURAL ACOUSTICS

Physical basics

Sound waves are produced by longitudinal pressure differ-
ences by a moving source and characterized by the waves’ 
speed, frequency, phase and amplitude as well as the wave-
length, which is central to how sound interacts with objects [4]. 

If a sound wave with power Pi as shown in Figure 1 
hits a surface relatively big compared to its wavelength 
then it is divided into parts that are reflected/ diffracted/ 
scattered (Pr), transmitted (Pt), passed through the material 
(Pf) or absorbed (Pa) [5]: 

(1)

 
All of these sound paths can be used to work on speech in-
telligibility, enhancing the perception of music or suppress-
ing noise. The science of achieving good sound within the 
built environment is called architectural acoustics, a sub-
field of acoustical engineering. Acoustics in architecture is 
further differentiated in inter-space noise control (building 
acoustics) and interior or exterior space acoustics (room 
acoustics) (see Figure 2). While the first finds measures to 
shield a room from noise transmission from another space, 
room acoustics is the science of sound propagation within 
spaces focusing on absorption and reflexion to achieve fa-
vorable sound environments for the intended use of a room.

Building acoustics primarily address sound trans-
mission between rooms and are common in everyday pro-
jects, whereas room acoustics focus on optimizing rever-
beration and clarity within a space but are rarely regulated 
[6]. Room design must balance absorption, diffusion, and 
reflection to prevent adverse acoustic conditions. Room 
acoustics significantly impact clarity in venues such as 
concert halls and parliaments but are often overlooked in 
everyday buildings negatively effecting sound in offices, 
schools, or urban areas. Here, insufficient absorption exac-
erbates unwanted effects like the Lombard effect, where 
increasing background noise forces speakers to raise their 
voices, further deteriorating intelligibility. The reverberation 
distance rH, which defines the point where direct and diffuse 
sound levels equalize, depends on absorption area and 
sound source distribution. Positioning speakers near reflec-
tive surfaces or employing directional loudspeakers can 
enhance intelligibility, but in multi-speaker environments, 
low-frequency buildup masks critical speech frequencies. 

Mitigating this requires deep-frequency absorbers down 
to at least 63 Hz, preferably 50 Hz, particularly in smaller 
rooms [5]. In environments with weakly absorbing surfaces 
(α < 0.2), excessive reflections degrade sound localization, 
music clarity, and speech intelligibility, affecting musicians, 
sound engineers, and office workers. Even minor reflective 
surfaces can distort measurements, requiring targeted 
absorption when structural modifications are impractical 
(Fuchs, 2017).

Acoustically effective materials with sound-scatter-
ing or absorbing properties are common in construction to 
enhance interior acoustics. Customizing acoustic meas-
ures for specific projects is vital for efficiency but faces 
design and manufacturing challenges.

Acoustic Standards
Sound and acoustic design significantly influence 

room atmosphere, affecting perception, health, and well-be-
ing [7]. To ensure accountability and standardization, guide-
lines such as ISO standards, the International Building Code 
(IBC), the National Building Code of Canada (NBC), and the 
Eurocode (EC) provide regulations. In Germany, state-level 
regulations specify acoustic requirements, as summarized 
in Figure 3.

German building codes mandate minimum sound in-
sulation based on usage, primarily outlined in DIN 4109 and 
DIN 12354. Stricter requirements, such as VDI 4100, may 
be applied upon request. While inter-room noise control 
is regulated, room acoustics—sound performance within 
a single space—lack mandatory codes. Instead, planners 
rely on general recommendations, including ISO 23591 for 
music venues and workplace guidelines such as VDI 2569 
(“Office Acoustics”), DIN 18041 (“Room Acoustics”), and ASR 
A3.7 (“Noise”). DIN 18041 is particularly relevant for optimiz-
ing room acoustics.

Due to their non-mandatory status, these standards 
are rarely implemented, leading to a focus on sound insula-
tion over intelligibility. As a result, classrooms, offices, and 
conference rooms often suffer from poor acoustic condi-
tions, causing high sound pressure levels and communica-
tion difficulties (Nocke, 2019).

PERFORMANCE-BASED DESIGN

Nature exemplifies advanced acoustic optimization, as 
seen in moth wings that disrupt bat echolocation through 
sound absorption, echo reflection, and frequency alteration, 
effectively camouflaging them from predators [9]. These bi-
oinspired principles offer new possibilities in acoustical en-
gineering, achieving effects unattainable with conventional 
surfaces [10] and show the portential of precise adaptation 
to specific conditions in order to achieve effective sound 
control. Sullivan’s principle of “Form Follows Function” (1896) 
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Figure 1: Interaction of sound and materials: possible sound paths.

Table 1: Overview of German codes for interior space acoustics 
(reproduced and modified from [8])

Figure 2: inter-space, interior and exterior acoustics (left)  
and retroreflections within a space (right).

Outside to inside
Tansmission

Inside to inside
Reflexion + Tansmission

Outside to outside
Reflexion

Calculation of reverberation time Requirements for rooms

DIN 18041 Audibility: 2016-03

ASR 3.7 Noise: 2018-05

VDI2569: 2019-10

DIN EN ISO 12354-6 Absorption/Reverberation
Time: 2004-04

DIN EN ISO 3382-1 Performance Spaces: 2009-10

DIN EN ISO 3382-2 Ordinary Spaces: 2008-09

DIN EN ISO 3382-2 Open Plan Offices: 2012-05

DIN EN ISO 354 Lab. Sound Absorption: 2003-12

DIN EN ISO 11654 – Absorption Coefficient: 1997-07

ISO20189 – Soundabsorption: 2018:11

Evaluation materials Experimental standards
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Table 2: Sound absorption coefficients of different common 
building materials [reproduced and modified from [41],[42]].

Figure 4: Design workflow: traditional (left), performance-based  
design (right) [reproduced and modified from [12]].
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highlights the importance of purpose-driven design in archi-
tecture. While not a new concept, advancements in digital 
modeling and manufacturing now enhance these aspira-
tions. Despite the persistence of formalistic design trends, 
functional optimization tools are increasingly shaping archi-
tectural solutions [11].

Traditional design workflows remain time-consum-
ing and imprecise, relying on iterative adjustments based 
on individual preferences. Performance-based design (PBD) 
similarly considers boundary conditions and desired char-
acteristics but differs by automating output generation 
through logic-based modeling rather than direct design 
modeling [12]. As shown in Figure 4, the generated solutions 
are then evaluated by the project team to determine the op-
timal outcome.

Advances in digital modeling and manufacturing en-
able greater design complexity, facilitating new theoretical 
concepts and experimental validation [13]. With increasingly 
complex building requirements, performance-based design 
plays a central role.

Parametric software allows visualization of intricate 
geometries, enabling function-oriented material design 
across scales, known as architectural infrastructure mate-
rials. This approach adapts geometry to environmental con-
ditions, space usage, and room shape while enabling rapid 
production of customized components. It is widely used 
in auditorium design to enhance acoustics for musicians 
and improve speech intelligibility [14–16]. The Smithsonian 
Museum’s courtyard roof exemplifies how multiple factors—
structural integrity, shading, and sound absorption—can be 
integrated [17].

Technological advances, particularly numerical 
simulations and parametric design, streamline feedback 
between generation, evaluation, and modification, making 
applications more accessible to planners [18]. Parametric 
modeling tools like Grasshopper for Rhinoceros support 
acoustic performance evaluation based on material and 
geometric properties, using programs such as Odeon [19], 
CATT-Acoustics [20], Treble [21], and Pachyderm Acoustics 
[22] . Pachyderm integrates design and analysis within 
Grasshopper, improving coordination [23]. Recent projects 
favor integrated design environments, reducing interoper-
ability risks between visualization and simulation tools [12].

Grasshopper modules like the solvers Galapagos 
[24, 25] and Octopus [20] optimize predefined parameters, 
allowing automated incorporation of simulation results 
and algorithmic refinement for greater precision. [26] com-
bined noise analysis, parametric design, and simulation 
to integrate acoustic benefits into landscape design. The 
study demonstrated potential noise reduction strategies 
for Munich Airport.

Metamaterials are high-performance structures with 
properties beyond natural materials, composed of periodic 
meta-atoms. Digital manufacturing advancements have led 

to their increased development. Metamaterials are classi-
fied into fields like nanophysics [27, 28], mechanical [29, 30], 
elastic [31, 32], and acoustic [33, 34]. Current construction 
research focuses on mechanical metamaterials [35] like 
auxetics to reduce earthquake damage [36] and compos-
ites for structural reinforcement [37]. Acoustic metamateri-
als manipulate sound waves through periodic meta-atoms, 
useful for noise reduction by redirecting sound via reflect-
ing meta-surfaces [38, 39] propose acoustic metasurfaces 
with C-shaped meta-atoms for sound reflection adjustment 
whereas [40] suggest H-shaped meta-atoms. Both achieve 
a wide-angle sound reflection of up to 80°. Acoustic proper-
ties depend on material, geometry, and arrangement, suit-
able for noise control in urban areas, facades, and sound 
barriers at various sites.

MATERIAL CONSIDERATIONS

Common building materials include clay, ceramics, 
wood, concrete, steel, and glass. Especially in the field of ar-
chitectural acoustics paper and gypsum need to be men-
tioned additionally. Depending on characteristics like its 
density a material’s capacity for sound absorption varies 
(see Figure 5) making some a better option for certain ap-
plications than others.

While clay, plaster, and paper have rather positive 
sound absorption properties, dense materials like ceram-
ics, metal or glass are for the most part reflective. The latter 
therefore need to be combined with high absorbent mate-
rials or can be used in room acoustics to transport sound. 
The material groups will subsequently be shortly reviewed in 
terms of their typical use and acoustic performance regard-
ing their capacity for sound absorption. Furthermore, their 
use for AM in the built environment shall be briefly outlined.

Ceramics and Clay

Clay, one of the oldest building materials, still remains prev-
alent in construction due to its global availability [43]. It can 
be distinguished between dried (clay) and fired (ceramics) 
products.

Fired elements are classified as ceramics, typical-
ly composed of clay, loess, and clay marl [44]. Industrial 
processes allow for varying properties, including porosity, 
which influences sound absorption. While ceramics gener-
ally exhibit high reflectance, increased porosity enhances 
absorption. Particularly additives like charcoal, which burn 
during firing leave pores and thereby improve performance 
at higher frequencies [45, 46]. For applications requiring 
maximal reflection, surface roughness can be adjusted 
through glazing, engobing, or modifying porosity via sinter-
ing at higher kiln temperatures [44].
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Dried elements are typically referred to as clay or 
loam. Loam, a mix of clay, sand, and silt, is traditionally used in 
rammed earth, clay bricks, and panels for non-load-bearing 
walls [47]. Unlike ceramics, unfired clay has a higher sound 
absorption coefficient, further enhanced by fiber additives. 
Rammed earth surfaces achieve frequency- and humidi-
ty-dependent absorption coefficients up to 0.58, significant-
ly outperforming concrete and lime-cement plaster across a 
broader frequency range [41, 42]. Its sustainability, high ther-
mal mass and hygric behavior are furtherly demonstrating 
the material’s suitability for indoor applications.

In research in the built environment different technol-
ogies are already well established for the additive manufac-
turing with clay. While robotically rammed earth [48] produc-
es sturdy structures, only simple large-scale structures are 
possible to realize, similar to automated sprayed earth, where 
the wet mixture is applied with high air pressure with a drone 
[49, 50]. On the contrary the base material for binder jetting is 
dry earth powder which is locally solidified a fluid ecological 
binder [51]. While it enables the fabrication of parts with larg-
er bridges and overhangs, the production is rather time-con-
suming and has disadvantages regarding the process sta-
bility. Extrusion offers a compromise between printing speed 
and producing high-resolution objects that gain their stability 
not through their mass, but through internal stiffening. 

Additive manufacturing techniques for shaping can 
be easily integrated into the process chain of structural ce-
ramics [52]. In addition to the original Cartesian extrusion 
systems, systems with extended motion control, have in-
creased the design possibilities for integrating additional 
functionalities through further degrees of freedom [53]. 
While additive manufacturing with loam can be used to 
print whole buildings [54], additively manufactured ceram-
ic parts are usually limited in size by the kiln and include 
smaller scales. This aspect seems to make AM ceramic 
parts only suitable for a complementary use in the built en-
vironment, for example when it comes to restauration [87]. 
Nevertheless, when integrated into industrial processes 
larger pieces and numbers can easily be fired thereby also 
making it a good use case for CCA where bricks are addi-
tively arranged into structures [79].

Paper and Wood

Paper is an established acoustic absorber due to its low 
density and environmental benefits. Commercial products 
exist for sound insulation [55], while ongoing research ex-
plores room acoustical applications. Panels made from re-
cycled egg trays and natural fibers (corn husk, sugar cane) 
highlight the potential of sustainable solutions [56]. Another 
approach optimizes cellulose-based multilayer composites 
for sound absorption [57].

Wood, though less absorbent, is commonly used in res-
onators. Hybrid materials, such as cork-wood combinations, 

have demonstrated superior absorption in impedance tube 
experiments, offering sustainable alternatives [58].

A number of researchers have already made use 
of the potential of those sustainable materials in additive 
manufacturing. The technology already found its way into 
the construction sector: Commercially available products 
are birdhouses or insect homes for biodiversity in green 
facades [59].

The base material for 3D paper printing usually con-
sists of cellulose, carboxymethylcellulose, lecithin and a filler 
such as chalk or starch [60, 86]. Aside from the challenges in 
regards to humidity or shrinkage its characteristics make it 
a good fit for acoustic applications [60]. Just like paper also 
research on wood AM mainly focuses on extrusion with a 
similar mixture consisting of wood particles and a starch 
binder. A challenge for these materials is the slow drying and 
therefore low green strength and the forming of mold [61].

Concrete and Plaster

Common concrete consists of cement, water, and aggre-
gates, including sand and gravel. Admixtures are often 
added to enhance workability, durability, or setting time. 
For acoustic applications, specialized concrete is used to 
reduce sound transmission. Lightweight aggregates like 
expanded clay or pumice create a more porous structure, 
improving sound absorption.

Plaster and gypsum-based materials are also wide-
ly used for walls, ceilings, and soundproofing. For the latter 
especially perforated ceiling tiles [62] are widely used, but 
also perforated wall elements or fiberboards are common. 
Gypsum is the primary ingredient, combined with water and 
additives like retarders, fibers, or perlite to improve strength 
and acoustic properties. Some products include mineral 
wool or foam fillers to enhance sound absorption. 

While various materials have been explored in the 
past years, concrete remains the dominant choice for ad-
ditive manufacturing [63]. Research in the field is steadily 
progressing and depending on the usage different suitable 
technologies are available. Concrete offers the advantage 
on effortlessly realizing prints on a large scale which means 
it is applicable to print houses in-situ or realize pre-fabricat-
ed parts. With a modular gantry printer even two story-build-
ings can be realized relatively fast using contour crafting, 
an extrusion process [64]. Shotcrete printing also offers the 
possibility of realizing large objects fast. The procedure ap-
plies concrete by compressed air with the compromise of a 
relatively lower resolution [49]. On the other hand, approach-
es like injection printing [65] so far are limited to smaller di-
mensions but come with the opportunity of working with 
an enlarged freedom of design because of the support 
that the surrounding gel offers distancing the technology 
from the common planar layers in additive manufacturing. 
Gypsum on the other hand is difficult to use in extrusion 
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processes due to its long setting time. Though approaches 
tried to develop adjusted mixtures [66] additive manufactur-
ing with gypsum mixtures is barely implemented.

Glass

The most prevalent glass types in the built environement 
are soda-lims slicate glass and borosilicate glass. Due to 
its closed surface and high-density glass of course has a 
very low sound absorption coefficient below 0.1 and is not 
common for acoustic measures. At the same time its im-
portance in construction and high percentage in facades 
give it an extraordinarily high potential to improve room 
acoustics, especially outdoors in urban areas [67]. By care-
fully engineering the geometry of a glass façade the design 
can help diffusely scatter or relocate sound to reduce the 
sound pressure level in certain areas. 

Because of its characteristics glass 3D-printing 
comes with a lot of challenges. As a material it has high 
strengths but is also brittle and needs high temperatures 
during processing. Nevertheless, in the past few years 
different reliable technologies have been developed that 
are able to meet the demands of the construction sector. 
For the common applications with soda-lime silicate glass 
Fused Deposition Modeling (FDM) has proven to be a good 
choice [68]. Another printing technology in the field that is 
being investigated is Direct Energy Deposition (DED) [69]. 
When it comes to facades, additive manufacturing is of use 
especially when it comes to shaping or modifying the flat 
planes and rethinking the way we work with them. Promising 
concepts include AM supports [88] in order to reduce the 
visuak imapact of joints, AM sealings of insulated glass 
units (IGU), stiffening of glass façades by adding AM ribs or 
simply aesthetic design applications within a building [89]. 

Steel 

An even metal plane is highly reflective with sound absorp-
tion values of up to 0.1. Adjustments in the geometry like 
perforations and angles or the combination with absorbing 
materials significantly improved the acoustic performance 
of metal facades [70].

Regarding steel various applications for the built envi-
ronment are possible from a high output to (in-situ) manufac-
ture bridges [71, 72] to manufacturing fairly smooth surfaces. 
The majority of projects in the field of additive manufactur-
ing with steel focus on the production of entirely printed 
elements like freeform columns [73] or nodes produced 
with Wire Arc Additive Manufacturing (WAAM) [74]. Since in 
facades freeform is becoming a key subject in recent pro-
jects involve the additive manufacturing of individualized 
nodes out of steel with smaller tolerances Directed Energy 
Deposition Laser Wire (DED-L)) [75] and the forming and 

stiffening of freeform steel sheet panels. The welded rein-
forcement not only helps in shaping and stiffening the sheets 
but also reduces production costs and saves material [76].

The variety in studies and research projects highlight 
the growing interest in additive manufacturing for the built 
environment and emphasize the need for further function-
al applications. Therefore, research in material optimization 
and process development is necessary, as well as sustain-
able solutions to address current limitations and expand 
commercial applications.

DIGITAL FABRICATION FOR  
ACOUSTIC APPLICATIONS

Digital manufacturing technologies are rapidly evolving 
across various fields, with additive manufacturing (AM) 
gaining prominence in construction due to its design flex-
ibility and potential for complex (acoustic) applications. 
However, AM in architecture faces two key challenges: (1) 
large-scale geometries and (2) high material demands, in-
cluding weather resistance, load-bearing capacity, and du-
rability [77]. A wide range of AM technologies and materials 
are available, selected based on desired properties and 
functionality [78]. Research spans lab-scale experiments 
to full-scale demonstrators, with Robocasting favored for 
its high-speed production, meeting industry demands [79]. 

Digital technologies are transforming acoustic op-
timization in building design. Using computational design, 
simulation tools, and digital fabrication, architects and engi-
neers create efficient and sustainable solutions. The focus 
is on controlling sound through scattering, absorption, and 
resonators to manage reflections and reverberation. Unlike 
traditional methods, digital fabrication allows for complex, 
custom acoustic elements, enhancing performance and 
aesthetics. The following section outlines Computerized 
Numerical Control (CNC) technologies relevant to acous-
tics and construction, emphasizing material feasibility and 
application scope.

Subtractive Technologies

Subtractive methods take away material to reach the final 
form, hence they are more similar to common conventional 
technologies than additive manufacturing. By combining 
digital design with robotics or CNC-milling complex struc-
tures can be derived.

An integral approach by Rossi et al. [16, 80] combines 
material, production method, form, acoustics and visual ef-
fect and examines their interdependencies. used brick ele-
ments for the acoustic modular design of interior spaces. 
They used robotic subtractive production using oscillating 
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wire cutting produced clay blanks with complex individu-
al geometries. In addition to their ability to micro-regulate 
sound through their porous texture, digital manufacturing 
technologies expand the possibilities of ceramic elements 
on a macro scale through function-based design [16, 80]. 
Giglio et al.[14] developed a workflow for the design of cus-
tomized acoustic interior surfaces based on computation-
al design and manufacturing processes (CNC milling). The 
aim was to combine optimized reflection, scattering and 
absorption properties in the final product.

Additive Technologies

Products that make use of diffuse scattering particularly 
benefit from the individualized mass production that digital 
methods offer due to the easy adaption of the dimensions 
of the reflecting structure related to the considered fre-
quencies and the room’s requirements [81].

Absorber systems effectively utilize digital technol-
ogies to reduce sound levels through passive destructive 
interference at specific frequencies [82]. Material and sur-
face roughness significantly impact performance, with 
smoother surfaces enhancing effectiveness. Attempts 
to incorporate diffuse scattering by bending geometries 
were negligible in acoustic benefit and caused temperature 
stress buckling [83].

AM acoustic panels can further be improved by us-
ing natural fiber-reinforced polymer composites in FDM to 
enhance mechanical as well as acoustical properties [84].

Measures for the outside of a facade using digital 
technologies on the other hand are rare. A pre-study at TU 
Darmstadt included the development of an additively man-
ufactured acoustically effective ceramic façade [85].

The idea behind the functionality of the design is 
visualized in Figure 6. The parabolically shaped elements 
direct sound waves into their interior. Thereby, the sound 
waves are deflected upwards. The upper parts of the sys-
tem are designed with an infill structure to further scatter 
and absorb sound. Size, curvature and opening can be var-
ied depending on the orientation of the sound source and 
the most dominant frequency range. Compared to the ref-
erence object with an even surface, a SPL reduction of up to 
7 dB was demonstrated for the tested facades.

CONCLUSIONS

Additive Manufacturing (AM) offers significant advantages 
in acoustic material production, enabling precise control 
over design and fabrication. While clay may not match the 
acoustic performance of specialized foams, its excellent hy-
gric properties and sustainability make it a viable alternative 
 

compared to other common materials in construction like 
concrete, glass, or metal. AM allows for the optimization of 
porosity and frequency response in clay-based acoustic el-
ements, addressing limitations of conventional manufactur-
ing. However, process-related variations, such as porosity 
inconsistencies and surface roughness, must be carefully 
managed to ensure reproducible mechanical properties.

Despite growing interest in clay 3D printing and its 
ecological benefits, current processes are constrained by 
coarse resolution and material variability. To facilitate its 
adoption in acoustic applications, further research is need-
ed to refine material formulations, optimize process param-
eters, and establish reliable drying methods. Prefabrication 
of such components requires a systematic approach to 
ensure dimensional accuracy and structural integrity. 
Additionally, hybrid strategies—such as applying 3D-printed 
textures onto prefabricated panels—could enhance acous-
tic performance while enabling scalable production.

Digital fabrication presents new possibilities for 
performance-driven acoustic solutions, yet its applica-
tion to natural materials like clay remains underexplored. 
Integrating computational design with AM can lead to tai-
lored acoustic elements that improve interior soundscapes 
while maintaining environmental efficiency. Future research 
needs to focus on refining printing techniques, developing 
hybrid solutions, and deepening the understanding of ma-
terial-process interactions to enable the reliable, scalable 
production of clay-based acoustic systems.
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